libgig  3.3.0
gig.cpp
Go to the documentation of this file.
1 /***************************************************************************
2  * *
3  * libgig - C++ cross-platform Gigasampler format file access library *
4  * *
5  * Copyright (C) 2003-2009 by Christian Schoenebeck *
6  * <cuse@users.sourceforge.net> *
7  * *
8  * This library is free software; you can redistribute it and/or modify *
9  * it under the terms of the GNU General Public License as published by *
10  * the Free Software Foundation; either version 2 of the License, or *
11  * (at your option) any later version. *
12  * *
13  * This library is distributed in the hope that it will be useful, *
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16  * GNU General Public License for more details. *
17  * *
18  * You should have received a copy of the GNU General Public License *
19  * along with this library; if not, write to the Free Software *
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21  * MA 02111-1307 USA *
22  ***************************************************************************/
23 
24 #include "gig.h"
25 
26 #include "helper.h"
27 
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31 
37 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38 
40 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52 
53 namespace gig {
54 
55 // *************** progress_t ***************
56 // *
57 
59  callback = NULL;
60  custom = NULL;
61  __range_min = 0.0f;
62  __range_max = 1.0f;
63  }
64 
65  // private helper function to convert progress of a subprocess into the global progress
66  static void __notify_progress(progress_t* pProgress, float subprogress) {
67  if (pProgress && pProgress->callback) {
68  const float totalrange = pProgress->__range_max - pProgress->__range_min;
69  const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70  pProgress->factor = totalprogress;
71  pProgress->callback(pProgress); // now actually notify about the progress
72  }
73  }
74 
75  // private helper function to divide a progress into subprogresses
76  static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77  if (pParentProgress && pParentProgress->callback) {
78  const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79  pSubProgress->callback = pParentProgress->callback;
80  pSubProgress->custom = pParentProgress->custom;
81  pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82  pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83  }
84  }
85 
86 
87 // *************** Internal functions for sample decompression ***************
88 // *
89 
90 namespace {
91 
92  inline int get12lo(const unsigned char* pSrc)
93  {
94  const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95  return x & 0x800 ? x - 0x1000 : x;
96  }
97 
98  inline int get12hi(const unsigned char* pSrc)
99  {
100  const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101  return x & 0x800 ? x - 0x1000 : x;
102  }
103 
104  inline int16_t get16(const unsigned char* pSrc)
105  {
106  return int16_t(pSrc[0] | pSrc[1] << 8);
107  }
108 
109  inline int get24(const unsigned char* pSrc)
110  {
111  const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112  return x & 0x800000 ? x - 0x1000000 : x;
113  }
114 
115  inline void store24(unsigned char* pDst, int x)
116  {
117  pDst[0] = x;
118  pDst[1] = x >> 8;
119  pDst[2] = x >> 16;
120  }
121 
122  void Decompress16(int compressionmode, const unsigned char* params,
123  int srcStep, int dstStep,
124  const unsigned char* pSrc, int16_t* pDst,
125  unsigned long currentframeoffset,
126  unsigned long copysamples)
127  {
128  switch (compressionmode) {
129  case 0: // 16 bit uncompressed
130  pSrc += currentframeoffset * srcStep;
131  while (copysamples) {
132  *pDst = get16(pSrc);
133  pDst += dstStep;
134  pSrc += srcStep;
135  copysamples--;
136  }
137  break;
138 
139  case 1: // 16 bit compressed to 8 bit
140  int y = get16(params);
141  int dy = get16(params + 2);
142  while (currentframeoffset) {
143  dy -= int8_t(*pSrc);
144  y -= dy;
145  pSrc += srcStep;
146  currentframeoffset--;
147  }
148  while (copysamples) {
149  dy -= int8_t(*pSrc);
150  y -= dy;
151  *pDst = y;
152  pDst += dstStep;
153  pSrc += srcStep;
154  copysamples--;
155  }
156  break;
157  }
158  }
159 
160  void Decompress24(int compressionmode, const unsigned char* params,
161  int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162  unsigned long currentframeoffset,
163  unsigned long copysamples, int truncatedBits)
164  {
165  int y, dy, ddy, dddy;
166 
167 #define GET_PARAMS(params) \
168  y = get24(params); \
169  dy = y - get24((params) + 3); \
170  ddy = get24((params) + 6); \
171  dddy = get24((params) + 9)
172 
173 #define SKIP_ONE(x) \
174  dddy -= (x); \
175  ddy -= dddy; \
176  dy = -dy - ddy; \
177  y += dy
178 
179 #define COPY_ONE(x) \
180  SKIP_ONE(x); \
181  store24(pDst, y << truncatedBits); \
182  pDst += dstStep
183 
184  switch (compressionmode) {
185  case 2: // 24 bit uncompressed
186  pSrc += currentframeoffset * 3;
187  while (copysamples) {
188  store24(pDst, get24(pSrc) << truncatedBits);
189  pDst += dstStep;
190  pSrc += 3;
191  copysamples--;
192  }
193  break;
194 
195  case 3: // 24 bit compressed to 16 bit
196  GET_PARAMS(params);
197  while (currentframeoffset) {
198  SKIP_ONE(get16(pSrc));
199  pSrc += 2;
200  currentframeoffset--;
201  }
202  while (copysamples) {
203  COPY_ONE(get16(pSrc));
204  pSrc += 2;
205  copysamples--;
206  }
207  break;
208 
209  case 4: // 24 bit compressed to 12 bit
210  GET_PARAMS(params);
211  while (currentframeoffset > 1) {
212  SKIP_ONE(get12lo(pSrc));
213  SKIP_ONE(get12hi(pSrc));
214  pSrc += 3;
215  currentframeoffset -= 2;
216  }
217  if (currentframeoffset) {
218  SKIP_ONE(get12lo(pSrc));
219  currentframeoffset--;
220  if (copysamples) {
221  COPY_ONE(get12hi(pSrc));
222  pSrc += 3;
223  copysamples--;
224  }
225  }
226  while (copysamples > 1) {
227  COPY_ONE(get12lo(pSrc));
228  COPY_ONE(get12hi(pSrc));
229  pSrc += 3;
230  copysamples -= 2;
231  }
232  if (copysamples) {
233  COPY_ONE(get12lo(pSrc));
234  }
235  break;
236 
237  case 5: // 24 bit compressed to 8 bit
238  GET_PARAMS(params);
239  while (currentframeoffset) {
240  SKIP_ONE(int8_t(*pSrc++));
241  currentframeoffset--;
242  }
243  while (copysamples) {
244  COPY_ONE(int8_t(*pSrc++));
245  copysamples--;
246  }
247  break;
248  }
249  }
250 
251  const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252  const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253  const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254  const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255 }
256 
257 
258 
259 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260 // *
261 
262  static uint32_t* __initCRCTable() {
263  static uint32_t res[256];
264 
265  for (int i = 0 ; i < 256 ; i++) {
266  uint32_t c = i;
267  for (int j = 0 ; j < 8 ; j++) {
268  c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269  }
270  res[i] = c;
271  }
272  return res;
273  }
274 
275  static const uint32_t* __CRCTable = __initCRCTable();
276 
282  inline static void __resetCRC(uint32_t& crc) {
283  crc = 0xffffffff;
284  }
285 
305  static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306  for (int i = 0 ; i < bufSize ; i++) {
307  crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308  }
309  }
310 
316  inline static uint32_t __encodeCRC(const uint32_t& crc) {
317  return crc ^ 0xffffffff;
318  }
319 
320 
321 
322 // *************** Other Internal functions ***************
323 // *
324 
325  static split_type_t __resolveSplitType(dimension_t dimension) {
326  return (
327  dimension == dimension_layer ||
328  dimension == dimension_samplechannel ||
329  dimension == dimension_releasetrigger ||
330  dimension == dimension_keyboard ||
331  dimension == dimension_roundrobin ||
332  dimension == dimension_random ||
333  dimension == dimension_smartmidi ||
334  dimension == dimension_roundrobinkeyboard
336  }
337 
338  static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339  return (dimension_definition.split_type == split_type_normal)
340  ? int(128.0 / dimension_definition.zones) : 0;
341  }
342 
343 
344 
345 // *************** Sample ***************
346 // *
347 
348  unsigned int Sample::Instances = 0;
350 
369  Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370  static const DLS::Info::string_length_t fixedStringLengths[] = {
371  { CHUNK_ID_INAM, 64 },
372  { 0, 0 }
373  };
374  pInfo->SetFixedStringLengths(fixedStringLengths);
375  Instances++;
376  FileNo = fileNo;
377 
378  __resetCRC(crc);
379 
380  pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381  if (pCk3gix) {
382  uint16_t iSampleGroup = pCk3gix->ReadInt16();
383  pGroup = pFile->GetGroup(iSampleGroup);
384  } else { // '3gix' chunk missing
385  // by default assigned to that mandatory "Default Group"
386  pGroup = pFile->GetGroup(0);
387  }
388 
389  pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390  if (pCkSmpl) {
396  pCkSmpl->Read(&SMPTEFormat, 1, 4);
398  Loops = pCkSmpl->ReadInt32();
399  pCkSmpl->ReadInt32(); // manufByt
400  LoopID = pCkSmpl->ReadInt32();
401  pCkSmpl->Read(&LoopType, 1, 4);
406  } else { // 'smpl' chunk missing
407  // use default values
408  Manufacturer = 0;
409  Product = 0;
410  SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411  MIDIUnityNote = 60;
412  FineTune = 0;
414  SMPTEOffset = 0;
415  Loops = 0;
416  LoopID = 0;
418  LoopStart = 0;
419  LoopEnd = 0;
420  LoopFraction = 0;
421  LoopPlayCount = 0;
422  }
423 
424  FrameTable = NULL;
425  SamplePos = 0;
426  RAMCache.Size = 0;
427  RAMCache.pStart = NULL;
429 
430  if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431 
432  RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433  Compressed = ewav;
434  Dithered = false;
435  TruncatedBits = 0;
436  if (Compressed) {
437  uint32_t version = ewav->ReadInt32();
438  if (version == 3 && BitDepth == 24) {
439  Dithered = ewav->ReadInt32();
440  ewav->SetPos(Channels == 2 ? 84 : 64);
441  TruncatedBits = ewav->ReadInt32();
442  }
443  ScanCompressedSample();
444  }
445 
446  // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
450  }
451  FrameOffset = 0; // just for streaming compressed samples
452 
453  LoopSize = LoopEnd - LoopStart + 1;
454  }
455 
468  // first update base class's chunks
470 
471  // make sure 'smpl' chunk exists
473  if (!pCkSmpl) {
475  memset(pCkSmpl->LoadChunkData(), 0, 60);
476  }
477  // update 'smpl' chunk
478  uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479  SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480  store32(&pData[0], Manufacturer);
481  store32(&pData[4], Product);
482  store32(&pData[8], SamplePeriod);
483  store32(&pData[12], MIDIUnityNote);
484  store32(&pData[16], FineTune);
485  store32(&pData[20], SMPTEFormat);
486  store32(&pData[24], SMPTEOffset);
487  store32(&pData[28], Loops);
488 
489  // we skip 'manufByt' for now (4 bytes)
490 
491  store32(&pData[36], LoopID);
492  store32(&pData[40], LoopType);
493  store32(&pData[44], LoopStart);
494  store32(&pData[48], LoopEnd);
495  store32(&pData[52], LoopFraction);
496  store32(&pData[56], LoopPlayCount);
497 
498  // make sure '3gix' chunk exists
501  // determine appropriate sample group index (to be stored in chunk)
502  uint16_t iSampleGroup = 0; // 0 refers to default sample group
503  File* pFile = static_cast<File*>(pParent);
504  if (pFile->pGroups) {
505  std::list<Group*>::iterator iter = pFile->pGroups->begin();
506  std::list<Group*>::iterator end = pFile->pGroups->end();
507  for (int i = 0; iter != end; i++, iter++) {
508  if (*iter == pGroup) {
509  iSampleGroup = i;
510  break; // found
511  }
512  }
513  }
514  // update '3gix' chunk
515  pData = (uint8_t*) pCk3gix->LoadChunkData();
516  store16(&pData[0], iSampleGroup);
517  }
518 
520  void Sample::ScanCompressedSample() {
521  //TODO: we have to add some more scans here (e.g. determine compression rate)
522  this->SamplesTotal = 0;
523  std::list<unsigned long> frameOffsets;
524 
525  SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
526  WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
527 
528  // Scanning
529  pCkData->SetPos(0);
530  if (Channels == 2) { // Stereo
531  for (int i = 0 ; ; i++) {
532  // for 24 bit samples every 8:th frame offset is
533  // stored, to save some memory
534  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
535 
536  const int mode_l = pCkData->ReadUint8();
537  const int mode_r = pCkData->ReadUint8();
538  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
539  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
540 
541  if (pCkData->RemainingBytes() <= frameSize) {
543  ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
544  (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
546  break;
547  }
549  pCkData->SetPos(frameSize, RIFF::stream_curpos);
550  }
551  }
552  else { // Mono
553  for (int i = 0 ; ; i++) {
554  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
555 
556  const int mode = pCkData->ReadUint8();
557  if (mode > 5) throw gig::Exception("Unknown compression mode");
558  const unsigned long frameSize = bytesPerFrame[mode];
559 
560  if (pCkData->RemainingBytes() <= frameSize) {
562  ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
564  break;
565  }
567  pCkData->SetPos(frameSize, RIFF::stream_curpos);
568  }
569  }
570  pCkData->SetPos(0);
571 
572  // Build the frames table (which is used for fast resolving of a frame's chunk offset)
573  if (FrameTable) delete[] FrameTable;
574  FrameTable = new unsigned long[frameOffsets.size()];
575  std::list<unsigned long>::iterator end = frameOffsets.end();
576  std::list<unsigned long>::iterator iter = frameOffsets.begin();
577  for (int i = 0; iter != end; i++, iter++) {
578  FrameTable[i] = *iter;
579  }
580  }
581 
592  return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
593  }
594 
617  buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
618  return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
619  }
620 
641  return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
642  }
643 
676  buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
677  if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
678  if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
679  unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
680  SetPos(0); // reset read position to begin of sample
681  RAMCache.pStart = new int8_t[allocationsize];
682  RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
683  RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
684  // fill the remaining buffer space with silence samples
685  memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
686  return GetCache();
687  }
688 
700  // return a copy of the buffer_t structure
701  buffer_t result;
702  result.Size = this->RAMCache.Size;
703  result.pStart = this->RAMCache.pStart;
705  return result;
706  }
707 
715  if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
716  RAMCache.pStart = NULL;
717  RAMCache.Size = 0;
719  }
720 
751  void Sample::Resize(int iNewSize) {
752  if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
753  DLS::Sample::Resize(iNewSize);
754  }
755 
777  unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
778  if (Compressed) {
779  switch (Whence) {
780  case RIFF::stream_curpos:
781  this->SamplePos += SampleCount;
782  break;
783  case RIFF::stream_end:
784  this->SamplePos = this->SamplesTotal - 1 - SampleCount;
785  break;
787  this->SamplePos -= SampleCount;
788  break;
789  case RIFF::stream_start: default:
790  this->SamplePos = SampleCount;
791  break;
792  }
793  if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
794 
795  unsigned long frame = this->SamplePos / 2048; // to which frame to jump
796  this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
797  pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
798  return this->SamplePos;
799  }
800  else { // not compressed
801  unsigned long orderedBytes = SampleCount * this->FrameSize;
802  unsigned long result = pCkData->SetPos(orderedBytes, Whence);
803  return (result == orderedBytes) ? SampleCount
804  : result / this->FrameSize;
805  }
806  }
807 
811  unsigned long Sample::GetPos() {
812  if (Compressed) return SamplePos;
813  else return pCkData->GetPos() / FrameSize;
814  }
815 
850  unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
851  DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
852  unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
853  uint8_t* pDst = (uint8_t*) pBuffer;
854 
855  SetPos(pPlaybackState->position); // recover position from the last time
856 
857  if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
858 
859  const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
860  const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
861 
862  if (GetPos() <= loopEnd) {
863  switch (loop.LoopType) {
864 
865  case loop_type_bidirectional: { //TODO: not tested yet!
866  do {
867  // if not endless loop check if max. number of loop cycles have been passed
868  if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
869 
870  if (!pPlaybackState->reverse) { // forward playback
871  do {
872  samplestoloopend = loopEnd - GetPos();
873  readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
874  samplestoread -= readsamples;
875  totalreadsamples += readsamples;
876  if (readsamples == samplestoloopend) {
877  pPlaybackState->reverse = true;
878  break;
879  }
880  } while (samplestoread && readsamples);
881  }
882  else { // backward playback
883 
884  // as we can only read forward from disk, we have to
885  // determine the end position within the loop first,
886  // read forward from that 'end' and finally after
887  // reading, swap all sample frames so it reflects
888  // backward playback
889 
890  unsigned long swapareastart = totalreadsamples;
891  unsigned long loopoffset = GetPos() - loop.LoopStart;
892  unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
893  unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
894 
895  SetPos(reverseplaybackend);
896 
897  // read samples for backward playback
898  do {
899  readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
900  samplestoreadinloop -= readsamples;
901  samplestoread -= readsamples;
902  totalreadsamples += readsamples;
903  } while (samplestoreadinloop && readsamples);
904 
905  SetPos(reverseplaybackend); // pretend we really read backwards
906 
907  if (reverseplaybackend == loop.LoopStart) {
908  pPlaybackState->loop_cycles_left--;
909  pPlaybackState->reverse = false;
910  }
911 
912  // reverse the sample frames for backward playback
913  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
914  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
915  }
916  } while (samplestoread && readsamples);
917  break;
918  }
919 
920  case loop_type_backward: { // TODO: not tested yet!
921  // forward playback (not entered the loop yet)
922  if (!pPlaybackState->reverse) do {
923  samplestoloopend = loopEnd - GetPos();
924  readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
925  samplestoread -= readsamples;
926  totalreadsamples += readsamples;
927  if (readsamples == samplestoloopend) {
928  pPlaybackState->reverse = true;
929  break;
930  }
931  } while (samplestoread && readsamples);
932 
933  if (!samplestoread) break;
934 
935  // as we can only read forward from disk, we have to
936  // determine the end position within the loop first,
937  // read forward from that 'end' and finally after
938  // reading, swap all sample frames so it reflects
939  // backward playback
940 
941  unsigned long swapareastart = totalreadsamples;
942  unsigned long loopoffset = GetPos() - loop.LoopStart;
943  unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
944  : samplestoread;
945  unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
946 
947  SetPos(reverseplaybackend);
948 
949  // read samples for backward playback
950  do {
951  // if not endless loop check if max. number of loop cycles have been passed
952  if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
953  samplestoloopend = loopEnd - GetPos();
954  readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
955  samplestoreadinloop -= readsamples;
956  samplestoread -= readsamples;
957  totalreadsamples += readsamples;
958  if (readsamples == samplestoloopend) {
959  pPlaybackState->loop_cycles_left--;
960  SetPos(loop.LoopStart);
961  }
962  } while (samplestoreadinloop && readsamples);
963 
964  SetPos(reverseplaybackend); // pretend we really read backwards
965 
966  // reverse the sample frames for backward playback
967  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
968  break;
969  }
970 
971  default: case loop_type_normal: {
972  do {
973  // if not endless loop check if max. number of loop cycles have been passed
974  if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
975  samplestoloopend = loopEnd - GetPos();
976  readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
977  samplestoread -= readsamples;
978  totalreadsamples += readsamples;
979  if (readsamples == samplestoloopend) {
980  pPlaybackState->loop_cycles_left--;
981  SetPos(loop.LoopStart);
982  }
983  } while (samplestoread && readsamples);
984  break;
985  }
986  }
987  }
988  }
989 
990  // read on without looping
991  if (samplestoread) do {
992  readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
993  samplestoread -= readsamples;
994  totalreadsamples += readsamples;
995  } while (readsamples && samplestoread);
996 
997  // store current position
998  pPlaybackState->position = GetPos();
999 
1000  return totalreadsamples;
1001  }
1002 
1025  unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1026  if (SampleCount == 0) return 0;
1027  if (!Compressed) {
1028  if (BitDepth == 24) {
1029  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1030  }
1031  else { // 16 bit
1032  // (pCkData->Read does endian correction)
1033  return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1034  : pCkData->Read(pBuffer, SampleCount, 2);
1035  }
1036  }
1037  else {
1038  if (this->SamplePos >= this->SamplesTotal) return 0;
1039  //TODO: efficiency: maybe we should test for an average compression rate
1040  unsigned long assumedsize = GuessSize(SampleCount),
1041  remainingbytes = 0, // remaining bytes in the local buffer
1042  remainingsamples = SampleCount,
1043  copysamples, skipsamples,
1044  currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1045  this->FrameOffset = 0;
1046 
1047  buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1048 
1049  // if decompression buffer too small, then reduce amount of samples to read
1050  if (pDecompressionBuffer->Size < assumedsize) {
1051  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1052  SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1053  remainingsamples = SampleCount;
1054  assumedsize = GuessSize(SampleCount);
1055  }
1056 
1057  unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1058  int16_t* pDst = static_cast<int16_t*>(pBuffer);
1059  uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1060  remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1061 
1062  while (remainingsamples && remainingbytes) {
1063  unsigned long framesamples = SamplesPerFrame;
1064  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1065 
1066  int mode_l = *pSrc++, mode_r = 0;
1067 
1068  if (Channels == 2) {
1069  mode_r = *pSrc++;
1070  framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1071  rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1072  nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1073  if (remainingbytes < framebytes) { // last frame in sample
1074  framesamples = SamplesInLastFrame;
1075  if (mode_l == 4 && (framesamples & 1)) {
1076  rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1077  }
1078  else {
1079  rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1080  }
1081  }
1082  }
1083  else {
1084  framebytes = bytesPerFrame[mode_l] + 1;
1085  nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1086  if (remainingbytes < framebytes) {
1087  framesamples = SamplesInLastFrame;
1088  }
1089  }
1090 
1091  // determine how many samples in this frame to skip and read
1092  if (currentframeoffset + remainingsamples >= framesamples) {
1093  if (currentframeoffset <= framesamples) {
1094  copysamples = framesamples - currentframeoffset;
1095  skipsamples = currentframeoffset;
1096  }
1097  else {
1098  copysamples = 0;
1099  skipsamples = framesamples;
1100  }
1101  }
1102  else {
1103  // This frame has enough data for pBuffer, but not
1104  // all of the frame is needed. Set file position
1105  // to start of this frame for next call to Read.
1106  copysamples = remainingsamples;
1107  skipsamples = currentframeoffset;
1108  pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1109  this->FrameOffset = currentframeoffset + copysamples;
1110  }
1111  remainingsamples -= copysamples;
1112 
1113  if (remainingbytes > framebytes) {
1114  remainingbytes -= framebytes;
1115  if (remainingsamples == 0 &&
1116  currentframeoffset + copysamples == framesamples) {
1117  // This frame has enough data for pBuffer, and
1118  // all of the frame is needed. Set file
1119  // position to start of next frame for next
1120  // call to Read. FrameOffset is 0.
1121  pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1122  }
1123  }
1124  else remainingbytes = 0;
1125 
1126  currentframeoffset -= skipsamples;
1127 
1128  if (copysamples == 0) {
1129  // skip this frame
1130  pSrc += framebytes - Channels;
1131  }
1132  else {
1133  const unsigned char* const param_l = pSrc;
1134  if (BitDepth == 24) {
1135  if (mode_l != 2) pSrc += 12;
1136 
1137  if (Channels == 2) { // Stereo
1138  const unsigned char* const param_r = pSrc;
1139  if (mode_r != 2) pSrc += 12;
1140 
1141  Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1142  skipsamples, copysamples, TruncatedBits);
1143  Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1144  skipsamples, copysamples, TruncatedBits);
1145  pDst24 += copysamples * 6;
1146  }
1147  else { // Mono
1148  Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1149  skipsamples, copysamples, TruncatedBits);
1150  pDst24 += copysamples * 3;
1151  }
1152  }
1153  else { // 16 bit
1154  if (mode_l) pSrc += 4;
1155 
1156  int step;
1157  if (Channels == 2) { // Stereo
1158  const unsigned char* const param_r = pSrc;
1159  if (mode_r) pSrc += 4;
1160 
1161  step = (2 - mode_l) + (2 - mode_r);
1162  Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1163  Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1164  skipsamples, copysamples);
1165  pDst += copysamples << 1;
1166  }
1167  else { // Mono
1168  step = 2 - mode_l;
1169  Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1170  pDst += copysamples;
1171  }
1172  }
1173  pSrc += nextFrameOffset;
1174  }
1175 
1176  // reload from disk to local buffer if needed
1177  if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1178  assumedsize = GuessSize(remainingsamples);
1179  pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1180  if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1181  remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1182  pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1183  }
1184  } // while
1185 
1186  this->SamplePos += (SampleCount - remainingsamples);
1187  if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1188  return (SampleCount - remainingsamples);
1189  }
1190  }
1191 
1214  unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1215  if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1216 
1217  // if this is the first write in this sample, reset the
1218  // checksum calculator
1219  if (pCkData->GetPos() == 0) {
1220  __resetCRC(crc);
1221  }
1222  if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1223  unsigned long res;
1224  if (BitDepth == 24) {
1225  res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1226  } else { // 16 bit
1227  res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1228  : pCkData->Write(pBuffer, SampleCount, 2);
1229  }
1230  __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1231 
1232  // if this is the last write, update the checksum chunk in the
1233  // file
1234  if (pCkData->GetPos() == pCkData->GetSize()) {
1235  File* pFile = static_cast<File*>(GetParent());
1236  pFile->SetSampleChecksum(this, __encodeCRC(crc));
1237  }
1238  return res;
1239  }
1240 
1257  buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1258  buffer_t result;
1259  const double worstCaseHeaderOverhead =
1260  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1261  result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1262  result.pStart = new int8_t[result.Size];
1263  result.NullExtensionSize = 0;
1264  return result;
1265  }
1266 
1274  void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1275  if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1276  delete[] (int8_t*) DecompressionBuffer.pStart;
1277  DecompressionBuffer.pStart = NULL;
1278  DecompressionBuffer.Size = 0;
1279  DecompressionBuffer.NullExtensionSize = 0;
1280  }
1281  }
1282 
1292  return pGroup;
1293  }
1294 
1296  Instances--;
1298  delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1301  }
1302  if (FrameTable) delete[] FrameTable;
1303  if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1304  }
1305 
1306 
1307 
1308 // *************** DimensionRegion ***************
1309 // *
1310 
1311  uint DimensionRegion::Instances = 0;
1312  DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1313 
1314  DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1315  Instances++;
1316 
1317  pSample = NULL;
1318  pRegion = pParent;
1319 
1320  if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1321  else memset(&Crossfade, 0, 4);
1322 
1323  if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1324 
1325  RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1326  if (_3ewa) { // if '3ewa' chunk exists
1327  _3ewa->ReadInt32(); // unknown, always == chunk size ?
1328  LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1329  EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1330  _3ewa->ReadInt16(); // unknown
1331  LFO1InternalDepth = _3ewa->ReadUint16();
1332  _3ewa->ReadInt16(); // unknown
1333  LFO3InternalDepth = _3ewa->ReadInt16();
1334  _3ewa->ReadInt16(); // unknown
1335  LFO1ControlDepth = _3ewa->ReadUint16();
1336  _3ewa->ReadInt16(); // unknown
1337  LFO3ControlDepth = _3ewa->ReadInt16();
1338  EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339  EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1340  _3ewa->ReadInt16(); // unknown
1341  EG1Sustain = _3ewa->ReadUint16();
1342  EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1343  EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1344  uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1345  EG1ControllerInvert = eg1ctrloptions & 0x01;
1349  EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1350  uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1351  EG2ControllerInvert = eg2ctrloptions & 0x01;
1355  LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1356  EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357  EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1358  _3ewa->ReadInt16(); // unknown
1359  EG2Sustain = _3ewa->ReadUint16();
1360  EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1361  _3ewa->ReadInt16(); // unknown
1362  LFO2ControlDepth = _3ewa->ReadUint16();
1363  LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1364  _3ewa->ReadInt16(); // unknown
1365  LFO2InternalDepth = _3ewa->ReadUint16();
1366  int32_t eg1decay2 = _3ewa->ReadInt32();
1367  EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1368  EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1369  _3ewa->ReadInt16(); // unknown
1370  EG1PreAttack = _3ewa->ReadUint16();
1371  int32_t eg2decay2 = _3ewa->ReadInt32();
1372  EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1373  EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1374  _3ewa->ReadInt16(); // unknown
1375  EG2PreAttack = _3ewa->ReadUint16();
1376  uint8_t velocityresponse = _3ewa->ReadUint8();
1377  if (velocityresponse < 5) {
1379  VelocityResponseDepth = velocityresponse;
1380  } else if (velocityresponse < 10) {
1382  VelocityResponseDepth = velocityresponse - 5;
1383  } else if (velocityresponse < 15) {
1385  VelocityResponseDepth = velocityresponse - 10;
1386  } else {
1389  }
1390  uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1391  if (releasevelocityresponse < 5) {
1393  ReleaseVelocityResponseDepth = releasevelocityresponse;
1394  } else if (releasevelocityresponse < 10) {
1396  ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1397  } else if (releasevelocityresponse < 15) {
1399  ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1400  } else {
1403  }
1406  _3ewa->ReadInt32(); // unknown
1407  SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1408  _3ewa->ReadInt16(); // unknown
1409  uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1410  PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1411  if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1412  else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1414  uint8_t pan = _3ewa->ReadUint8();
1415  Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1416  SelfMask = _3ewa->ReadInt8() & 0x01;
1417  _3ewa->ReadInt8(); // unknown
1418  uint8_t lfo3ctrl = _3ewa->ReadUint8();
1419  LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1420  LFO3Sync = lfo3ctrl & 0x20; // bit 5
1421  InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1422  AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1423  uint8_t lfo2ctrl = _3ewa->ReadUint8();
1424  LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1425  LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1426  LFO2Sync = lfo2ctrl & 0x20; // bit 5
1427  bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1428  uint8_t lfo1ctrl = _3ewa->ReadUint8();
1429  LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1430  LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1431  LFO1Sync = lfo1ctrl & 0x40; // bit 6
1432  VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1434  uint16_t eg3depth = _3ewa->ReadUint16();
1435  EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1436  : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1437  _3ewa->ReadInt16(); // unknown
1438  ChannelOffset = _3ewa->ReadUint8() / 4;
1439  uint8_t regoptions = _3ewa->ReadUint8();
1440  MSDecode = regoptions & 0x01; // bit 0
1441  SustainDefeat = regoptions & 0x02; // bit 1
1442  _3ewa->ReadInt16(); // unknown
1443  VelocityUpperLimit = _3ewa->ReadInt8();
1444  _3ewa->ReadInt8(); // unknown
1445  _3ewa->ReadInt16(); // unknown
1446  ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1447  _3ewa->ReadInt8(); // unknown
1448  _3ewa->ReadInt8(); // unknown
1449  EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1450  uint8_t vcfcutoff = _3ewa->ReadUint8();
1451  VCFEnabled = vcfcutoff & 0x80; // bit 7
1452  VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1453  VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1454  uint8_t vcfvelscale = _3ewa->ReadUint8();
1455  VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1456  VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1457  _3ewa->ReadInt8(); // unknown
1458  uint8_t vcfresonance = _3ewa->ReadUint8();
1459  VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1460  VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1461  uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1462  VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1463  VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1464  uint8_t vcfvelocity = _3ewa->ReadUint8();
1465  VCFVelocityDynamicRange = vcfvelocity % 5;
1466  VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1467  VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1468  if (VCFType == vcf_type_lowpass) {
1469  if (lfo3ctrl & 0x40) // bit 6
1471  }
1472  if (_3ewa->RemainingBytes() >= 8) {
1473  _3ewa->Read(DimensionUpperLimits, 1, 8);
1474  } else {
1475  memset(DimensionUpperLimits, 0, 8);
1476  }
1477  } else { // '3ewa' chunk does not exist yet
1478  // use default values
1479  LFO3Frequency = 1.0;
1480  EG3Attack = 0.0;
1481  LFO1InternalDepth = 0;
1482  LFO3InternalDepth = 0;
1483  LFO1ControlDepth = 0;
1484  LFO3ControlDepth = 0;
1485  EG1Attack = 0.0;
1486  EG1Decay1 = 0.005;
1487  EG1Sustain = 1000;
1488  EG1Release = 0.3;
1491  EG1ControllerInvert = false;
1497  EG2ControllerInvert = false;
1501  LFO1Frequency = 1.0;
1502  EG2Attack = 0.0;
1503  EG2Decay1 = 0.005;
1504  EG2Sustain = 1000;
1505  EG2Release = 0.3;
1506  LFO2ControlDepth = 0;
1507  LFO2Frequency = 1.0;
1508  LFO2InternalDepth = 0;
1509  EG1Decay2 = 0.0;
1510  EG1InfiniteSustain = true;
1511  EG1PreAttack = 0;
1512  EG2Decay2 = 0.0;
1513  EG2InfiniteSustain = true;
1514  EG2PreAttack = 0;
1521  SampleStartOffset = 0;
1522  PitchTrack = true;
1524  Pan = 0;
1525  SelfMask = true;
1527  LFO3Sync = false;
1532  LFO2FlipPhase = false;
1533  LFO2Sync = false;
1535  LFO1FlipPhase = false;
1536  LFO1Sync = false;
1538  EG3Depth = 0;
1539  ChannelOffset = 0;
1540  MSDecode = false;
1541  SustainDefeat = false;
1542  VelocityUpperLimit = 0;
1543  ReleaseTriggerDecay = 0;
1544  EG1Hold = false;
1545  VCFEnabled = false;
1546  VCFCutoff = 0;
1548  VCFCutoffControllerInvert = false;
1549  VCFVelocityScale = 0;
1550  VCFResonance = 0;
1551  VCFResonanceDynamic = false;
1552  VCFKeyboardTracking = false;
1554  VCFVelocityDynamicRange = 0x04;
1557  memset(DimensionUpperLimits, 127, 8);
1558  }
1559 
1560  pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1563 
1564  pVelocityReleaseTable = GetReleaseVelocityTable(
1567  );
1568 
1569  pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1573 
1574  SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1575  VelocityTable = 0;
1576  }
1577 
1578  /*
1579  * Constructs a DimensionRegion by copying all parameters from
1580  * another DimensionRegion
1581  */
1582  DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1583  Instances++;
1584  *this = src; // default memberwise shallow copy of all parameters
1585  pParentList = _3ewl; // restore the chunk pointer
1586 
1587  // deep copy of owned structures
1588  if (src.VelocityTable) {
1589  VelocityTable = new uint8_t[128];
1590  for (int k = 0 ; k < 128 ; k++)
1591  VelocityTable[k] = src.VelocityTable[k];
1592  }
1593  if (src.pSampleLoops) {
1595  for (int k = 0 ; k < src.SampleLoops ; k++)
1596  pSampleLoops[k] = src.pSampleLoops[k];
1597  }
1598  }
1599 
1604  void DimensionRegion::SetGain(int32_t gain) {
1605  DLS::Sampler::SetGain(gain);
1606  SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1607  }
1608 
1617  // first update base class's chunk
1619 
1621  uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1622  pData[12] = Crossfade.in_start;
1623  pData[13] = Crossfade.in_end;
1624  pData[14] = Crossfade.out_start;
1625  pData[15] = Crossfade.out_end;
1626 
1627  // make sure '3ewa' chunk exists
1629  if (!_3ewa) {
1630  File* pFile = (File*) GetParent()->GetParent()->GetParent();
1631  bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1632  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1633  }
1634  pData = (uint8_t*) _3ewa->LoadChunkData();
1635 
1636  // update '3ewa' chunk with DimensionRegion's current settings
1637 
1638  const uint32_t chunksize = _3ewa->GetNewSize();
1639  store32(&pData[0], chunksize); // unknown, always chunk size?
1640 
1641  const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1642  store32(&pData[4], lfo3freq);
1643 
1644  const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1645  store32(&pData[8], eg3attack);
1646 
1647  // next 2 bytes unknown
1648 
1649  store16(&pData[14], LFO1InternalDepth);
1650 
1651  // next 2 bytes unknown
1652 
1653  store16(&pData[18], LFO3InternalDepth);
1654 
1655  // next 2 bytes unknown
1656 
1657  store16(&pData[22], LFO1ControlDepth);
1658 
1659  // next 2 bytes unknown
1660 
1661  store16(&pData[26], LFO3ControlDepth);
1662 
1663  const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1664  store32(&pData[28], eg1attack);
1665 
1666  const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1667  store32(&pData[32], eg1decay1);
1668 
1669  // next 2 bytes unknown
1670 
1671  store16(&pData[38], EG1Sustain);
1672 
1673  const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1674  store32(&pData[40], eg1release);
1675 
1676  const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1677  pData[44] = eg1ctl;
1678 
1679  const uint8_t eg1ctrloptions =
1680  (EG1ControllerInvert ? 0x01 : 0x00) |
1684  pData[45] = eg1ctrloptions;
1685 
1686  const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1687  pData[46] = eg2ctl;
1688 
1689  const uint8_t eg2ctrloptions =
1690  (EG2ControllerInvert ? 0x01 : 0x00) |
1694  pData[47] = eg2ctrloptions;
1695 
1696  const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1697  store32(&pData[48], lfo1freq);
1698 
1699  const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1700  store32(&pData[52], eg2attack);
1701 
1702  const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1703  store32(&pData[56], eg2decay1);
1704 
1705  // next 2 bytes unknown
1706 
1707  store16(&pData[62], EG2Sustain);
1708 
1709  const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1710  store32(&pData[64], eg2release);
1711 
1712  // next 2 bytes unknown
1713 
1714  store16(&pData[70], LFO2ControlDepth);
1715 
1716  const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1717  store32(&pData[72], lfo2freq);
1718 
1719  // next 2 bytes unknown
1720 
1721  store16(&pData[78], LFO2InternalDepth);
1722 
1723  const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1724  store32(&pData[80], eg1decay2);
1725 
1726  // next 2 bytes unknown
1727 
1728  store16(&pData[86], EG1PreAttack);
1729 
1730  const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1731  store32(&pData[88], eg2decay2);
1732 
1733  // next 2 bytes unknown
1734 
1735  store16(&pData[94], EG2PreAttack);
1736 
1737  {
1738  if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1739  uint8_t velocityresponse = VelocityResponseDepth;
1740  switch (VelocityResponseCurve) {
1741  case curve_type_nonlinear:
1742  break;
1743  case curve_type_linear:
1744  velocityresponse += 5;
1745  break;
1746  case curve_type_special:
1747  velocityresponse += 10;
1748  break;
1749  case curve_type_unknown:
1750  default:
1751  throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1752  }
1753  pData[96] = velocityresponse;
1754  }
1755 
1756  {
1757  if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1758  uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1759  switch (ReleaseVelocityResponseCurve) {
1760  case curve_type_nonlinear:
1761  break;
1762  case curve_type_linear:
1763  releasevelocityresponse += 5;
1764  break;
1765  case curve_type_special:
1766  releasevelocityresponse += 10;
1767  break;
1768  case curve_type_unknown:
1769  default:
1770  throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1771  }
1772  pData[97] = releasevelocityresponse;
1773  }
1774 
1775  pData[98] = VelocityResponseCurveScaling;
1776 
1777  pData[99] = AttenuationControllerThreshold;
1778 
1779  // next 4 bytes unknown
1780 
1781  store16(&pData[104], SampleStartOffset);
1782 
1783  // next 2 bytes unknown
1784 
1785  {
1786  uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1787  switch (DimensionBypass) {
1788  case dim_bypass_ctrl_94:
1789  pitchTrackDimensionBypass |= 0x10;
1790  break;
1791  case dim_bypass_ctrl_95:
1792  pitchTrackDimensionBypass |= 0x20;
1793  break;
1794  case dim_bypass_ctrl_none:
1795  //FIXME: should we set anything here?
1796  break;
1797  default:
1798  throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1799  }
1800  pData[108] = pitchTrackDimensionBypass;
1801  }
1802 
1803  const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1804  pData[109] = pan;
1805 
1806  const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1807  pData[110] = selfmask;
1808 
1809  // next byte unknown
1810 
1811  {
1812  uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1813  if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1814  if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1815  if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1816  pData[112] = lfo3ctrl;
1817  }
1818 
1819  const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1820  pData[113] = attenctl;
1821 
1822  {
1823  uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1824  if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1825  if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1826  if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1827  pData[114] = lfo2ctrl;
1828  }
1829 
1830  {
1831  uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1832  if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1833  if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1836  pData[115] = lfo1ctrl;
1837  }
1838 
1839  const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1840  : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1841  store16(&pData[116], eg3depth);
1842 
1843  // next 2 bytes unknown
1844 
1845  const uint8_t channeloffset = ChannelOffset * 4;
1846  pData[120] = channeloffset;
1847 
1848  {
1849  uint8_t regoptions = 0;
1850  if (MSDecode) regoptions |= 0x01; // bit 0
1851  if (SustainDefeat) regoptions |= 0x02; // bit 1
1852  pData[121] = regoptions;
1853  }
1854 
1855  // next 2 bytes unknown
1856 
1857  pData[124] = VelocityUpperLimit;
1858 
1859  // next 3 bytes unknown
1860 
1861  pData[128] = ReleaseTriggerDecay;
1862 
1863  // next 2 bytes unknown
1864 
1865  const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1866  pData[131] = eg1hold;
1867 
1868  const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1869  (VCFCutoff & 0x7f); /* lower 7 bits */
1870  pData[132] = vcfcutoff;
1871 
1872  pData[133] = VCFCutoffController;
1873 
1874  const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1875  (VCFVelocityScale & 0x7f); /* lower 7 bits */
1876  pData[134] = vcfvelscale;
1877 
1878  // next byte unknown
1879 
1880  const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1881  (VCFResonance & 0x7f); /* lower 7 bits */
1882  pData[136] = vcfresonance;
1883 
1884  const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1885  (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1886  pData[137] = vcfbreakpoint;
1887 
1888  const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1889  VCFVelocityCurve * 5;
1890  pData[138] = vcfvelocity;
1891 
1892  const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1893  pData[139] = vcftype;
1894 
1895  if (chunksize >= 148) {
1896  memcpy(&pData[140], DimensionUpperLimits, 8);
1897  }
1898  }
1899 
1900  double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1901  curve_type_t curveType = releaseVelocityResponseCurve;
1902  uint8_t depth = releaseVelocityResponseDepth;
1903  // this models a strange behaviour or bug in GSt: two of the
1904  // velocity response curves for release time are not used even
1905  // if specified, instead another curve is chosen.
1906  if ((curveType == curve_type_nonlinear && depth == 0) ||
1907  (curveType == curve_type_special && depth == 4)) {
1908  curveType = curve_type_nonlinear;
1909  depth = 3;
1910  }
1911  return GetVelocityTable(curveType, depth, 0);
1912  }
1913 
1914  double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1915  uint8_t vcfVelocityDynamicRange,
1916  uint8_t vcfVelocityScale,
1917  vcf_cutoff_ctrl_t vcfCutoffController)
1918  {
1919  curve_type_t curveType = vcfVelocityCurve;
1920  uint8_t depth = vcfVelocityDynamicRange;
1921  // even stranger GSt: two of the velocity response curves for
1922  // filter cutoff are not used, instead another special curve
1923  // is chosen. This curve is not used anywhere else.
1924  if ((curveType == curve_type_nonlinear && depth == 0) ||
1925  (curveType == curve_type_special && depth == 4)) {
1926  curveType = curve_type_special;
1927  depth = 5;
1928  }
1929  return GetVelocityTable(curveType, depth,
1930  (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1931  ? vcfVelocityScale : 0);
1932  }
1933 
1934  // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1935  double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1936  {
1937  double* table;
1938  uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1939  if (pVelocityTables->count(tableKey)) { // if key exists
1940  table = (*pVelocityTables)[tableKey];
1941  }
1942  else {
1943  table = CreateVelocityTable(curveType, depth, scaling);
1944  (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1945  }
1946  return table;
1947  }
1948 
1950  return pRegion;
1951  }
1952 
1953  leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1954  leverage_ctrl_t decodedcontroller;
1955  switch (EncodedController) {
1956  // special controller
1957  case _lev_ctrl_none:
1958  decodedcontroller.type = leverage_ctrl_t::type_none;
1959  decodedcontroller.controller_number = 0;
1960  break;
1961  case _lev_ctrl_velocity:
1962  decodedcontroller.type = leverage_ctrl_t::type_velocity;
1963  decodedcontroller.controller_number = 0;
1964  break;
1965  case _lev_ctrl_channelaftertouch:
1966  decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1967  decodedcontroller.controller_number = 0;
1968  break;
1969 
1970  // ordinary MIDI control change controller
1971  case _lev_ctrl_modwheel:
1972  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1973  decodedcontroller.controller_number = 1;
1974  break;
1975  case _lev_ctrl_breath:
1976  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1977  decodedcontroller.controller_number = 2;
1978  break;
1979  case _lev_ctrl_foot:
1980  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1981  decodedcontroller.controller_number = 4;
1982  break;
1983  case _lev_ctrl_effect1:
1984  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1985  decodedcontroller.controller_number = 12;
1986  break;
1987  case _lev_ctrl_effect2:
1988  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1989  decodedcontroller.controller_number = 13;
1990  break;
1991  case _lev_ctrl_genpurpose1:
1992  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1993  decodedcontroller.controller_number = 16;
1994  break;
1995  case _lev_ctrl_genpurpose2:
1996  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1997  decodedcontroller.controller_number = 17;
1998  break;
1999  case _lev_ctrl_genpurpose3:
2000  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2001  decodedcontroller.controller_number = 18;
2002  break;
2003  case _lev_ctrl_genpurpose4:
2004  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2005  decodedcontroller.controller_number = 19;
2006  break;
2007  case _lev_ctrl_portamentotime:
2008  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2009  decodedcontroller.controller_number = 5;
2010  break;
2011  case _lev_ctrl_sustainpedal:
2012  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2013  decodedcontroller.controller_number = 64;
2014  break;
2015  case _lev_ctrl_portamento:
2016  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2017  decodedcontroller.controller_number = 65;
2018  break;
2019  case _lev_ctrl_sostenutopedal:
2020  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2021  decodedcontroller.controller_number = 66;
2022  break;
2023  case _lev_ctrl_softpedal:
2024  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2025  decodedcontroller.controller_number = 67;
2026  break;
2027  case _lev_ctrl_genpurpose5:
2028  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2029  decodedcontroller.controller_number = 80;
2030  break;
2031  case _lev_ctrl_genpurpose6:
2032  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2033  decodedcontroller.controller_number = 81;
2034  break;
2035  case _lev_ctrl_genpurpose7:
2036  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2037  decodedcontroller.controller_number = 82;
2038  break;
2039  case _lev_ctrl_genpurpose8:
2040  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2041  decodedcontroller.controller_number = 83;
2042  break;
2043  case _lev_ctrl_effect1depth:
2044  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2045  decodedcontroller.controller_number = 91;
2046  break;
2047  case _lev_ctrl_effect2depth:
2048  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2049  decodedcontroller.controller_number = 92;
2050  break;
2051  case _lev_ctrl_effect3depth:
2052  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2053  decodedcontroller.controller_number = 93;
2054  break;
2055  case _lev_ctrl_effect4depth:
2056  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2057  decodedcontroller.controller_number = 94;
2058  break;
2059  case _lev_ctrl_effect5depth:
2060  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2061  decodedcontroller.controller_number = 95;
2062  break;
2063 
2064  // unknown controller type
2065  default:
2066  throw gig::Exception("Unknown leverage controller type.");
2067  }
2068  return decodedcontroller;
2069  }
2070 
2071  DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2072  _lev_ctrl_t encodedcontroller;
2073  switch (DecodedController.type) {
2074  // special controller
2076  encodedcontroller = _lev_ctrl_none;
2077  break;
2079  encodedcontroller = _lev_ctrl_velocity;
2080  break;
2082  encodedcontroller = _lev_ctrl_channelaftertouch;
2083  break;
2084 
2085  // ordinary MIDI control change controller
2087  switch (DecodedController.controller_number) {
2088  case 1:
2089  encodedcontroller = _lev_ctrl_modwheel;
2090  break;
2091  case 2:
2092  encodedcontroller = _lev_ctrl_breath;
2093  break;
2094  case 4:
2095  encodedcontroller = _lev_ctrl_foot;
2096  break;
2097  case 12:
2098  encodedcontroller = _lev_ctrl_effect1;
2099  break;
2100  case 13:
2101  encodedcontroller = _lev_ctrl_effect2;
2102  break;
2103  case 16:
2104  encodedcontroller = _lev_ctrl_genpurpose1;
2105  break;
2106  case 17:
2107  encodedcontroller = _lev_ctrl_genpurpose2;
2108  break;
2109  case 18:
2110  encodedcontroller = _lev_ctrl_genpurpose3;
2111  break;
2112  case 19:
2113  encodedcontroller = _lev_ctrl_genpurpose4;
2114  break;
2115  case 5:
2116  encodedcontroller = _lev_ctrl_portamentotime;
2117  break;
2118  case 64:
2119  encodedcontroller = _lev_ctrl_sustainpedal;
2120  break;
2121  case 65:
2122  encodedcontroller = _lev_ctrl_portamento;
2123  break;
2124  case 66:
2125  encodedcontroller = _lev_ctrl_sostenutopedal;
2126  break;
2127  case 67:
2128  encodedcontroller = _lev_ctrl_softpedal;
2129  break;
2130  case 80:
2131  encodedcontroller = _lev_ctrl_genpurpose5;
2132  break;
2133  case 81:
2134  encodedcontroller = _lev_ctrl_genpurpose6;
2135  break;
2136  case 82:
2137  encodedcontroller = _lev_ctrl_genpurpose7;
2138  break;
2139  case 83:
2140  encodedcontroller = _lev_ctrl_genpurpose8;
2141  break;
2142  case 91:
2143  encodedcontroller = _lev_ctrl_effect1depth;
2144  break;
2145  case 92:
2146  encodedcontroller = _lev_ctrl_effect2depth;
2147  break;
2148  case 93:
2149  encodedcontroller = _lev_ctrl_effect3depth;
2150  break;
2151  case 94:
2152  encodedcontroller = _lev_ctrl_effect4depth;
2153  break;
2154  case 95:
2155  encodedcontroller = _lev_ctrl_effect5depth;
2156  break;
2157  default:
2158  throw gig::Exception("leverage controller number is not supported by the gig format");
2159  }
2160  break;
2161  default:
2162  throw gig::Exception("Unknown leverage controller type.");
2163  }
2164  return encodedcontroller;
2165  }
2166 
2168  Instances--;
2169  if (!Instances) {
2170  // delete the velocity->volume tables
2171  VelocityTableMap::iterator iter;
2172  for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2173  double* pTable = iter->second;
2174  if (pTable) delete[] pTable;
2175  }
2176  pVelocityTables->clear();
2177  delete pVelocityTables;
2178  pVelocityTables = NULL;
2179  }
2180  if (VelocityTable) delete[] VelocityTable;
2181  }
2182 
2194  double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2195  return pVelocityAttenuationTable[MIDIKeyVelocity];
2196  }
2197 
2198  double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2199  return pVelocityReleaseTable[MIDIKeyVelocity];
2200  }
2201 
2202  double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2203  return pVelocityCutoffTable[MIDIKeyVelocity];
2204  }
2205 
2211  pVelocityAttenuationTable =
2212  GetVelocityTable(
2214  );
2215  VelocityResponseCurve = curve;
2216  }
2217 
2223  pVelocityAttenuationTable =
2224  GetVelocityTable(
2226  );
2227  VelocityResponseDepth = depth;
2228  }
2229 
2235  pVelocityAttenuationTable =
2236  GetVelocityTable(
2238  );
2239  VelocityResponseCurveScaling = scaling;
2240  }
2241 
2247  pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2249  }
2250 
2256  pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2258  }
2259 
2265  pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2266  VCFCutoffController = controller;
2267  }
2268 
2274  pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2275  VCFVelocityCurve = curve;
2276  }
2277 
2283  pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2284  VCFVelocityDynamicRange = range;
2285  }
2286 
2292  pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2293  VCFVelocityScale = scaling;
2294  }
2295 
2296  double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2297 
2298  // line-segment approximations of the 15 velocity curves
2299 
2300  // linear
2301  const int lin0[] = { 1, 1, 127, 127 };
2302  const int lin1[] = { 1, 21, 127, 127 };
2303  const int lin2[] = { 1, 45, 127, 127 };
2304  const int lin3[] = { 1, 74, 127, 127 };
2305  const int lin4[] = { 1, 127, 127, 127 };
2306 
2307  // non-linear
2308  const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2309  const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2310  127, 127 };
2311  const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2312  127, 127 };
2313  const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2314  127, 127 };
2315  const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2316 
2317  // special
2318  const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2319  113, 127, 127, 127 };
2320  const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2321  118, 127, 127, 127 };
2322  const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2323  85, 90, 91, 127, 127, 127 };
2324  const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2325  117, 127, 127, 127 };
2326  const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2327  127, 127 };
2328 
2329  // this is only used by the VCF velocity curve
2330  const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2331  91, 127, 127, 127 };
2332 
2333  const int* const curves[] = { non0, non1, non2, non3, non4,
2334  lin0, lin1, lin2, lin3, lin4,
2335  spe0, spe1, spe2, spe3, spe4, spe5 };
2336 
2337  double* const table = new double[128];
2338 
2339  const int* curve = curves[curveType * 5 + depth];
2340  const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2341 
2342  table[0] = 0;
2343  for (int x = 1 ; x < 128 ; x++) {
2344 
2345  if (x > curve[2]) curve += 2;
2346  double y = curve[1] + (x - curve[0]) *
2347  (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2348  y = y / 127;
2349 
2350  // Scale up for s > 20, down for s < 20. When
2351  // down-scaling, the curve still ends at 1.0.
2352  if (s < 20 && y >= 0.5)
2353  y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2354  else
2355  y = y * (s / 20.0);
2356  if (y > 1) y = 1;
2357 
2358  table[x] = y;
2359  }
2360  return table;
2361  }
2362 
2363 
2364 // *************** Region ***************
2365 // *
2366 
2367  Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2368  // Initialization
2369  Dimensions = 0;
2370  for (int i = 0; i < 256; i++) {
2371  pDimensionRegions[i] = NULL;
2372  }
2373  Layers = 1;
2374  File* file = (File*) GetParent()->GetParent();
2375  int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2376 
2377  // Actual Loading
2378 
2379  if (!file->GetAutoLoad()) return;
2380 
2381  LoadDimensionRegions(rgnList);
2382 
2383  RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2384  if (_3lnk) {
2385  DimensionRegions = _3lnk->ReadUint32();
2386  for (int i = 0; i < dimensionBits; i++) {
2387  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2388  uint8_t bits = _3lnk->ReadUint8();
2389  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2390  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2391  uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2392  if (dimension == dimension_none) { // inactive dimension
2394  pDimensionDefinitions[i].bits = 0;
2398  }
2399  else { // active dimension
2400  pDimensionDefinitions[i].dimension = dimension;
2401  pDimensionDefinitions[i].bits = bits;
2402  pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2403  pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2404  pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2405  Dimensions++;
2406 
2407  // if this is a layer dimension, remember the amount of layers
2408  if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2409  }
2410  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2411  }
2412  for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2413 
2414  // if there's a velocity dimension and custom velocity zone splits are used,
2415  // update the VelocityTables in the dimension regions
2417 
2418  // jump to start of the wave pool indices (if not already there)
2419  if (file->pVersion && file->pVersion->major == 3)
2420  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2421  else
2422  _3lnk->SetPos(44);
2423 
2424  // load sample references (if auto loading is enabled)
2425  if (file->GetAutoLoad()) {
2426  for (uint i = 0; i < DimensionRegions; i++) {
2427  uint32_t wavepoolindex = _3lnk->ReadUint32();
2428  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2429  }
2430  GetSample(); // load global region sample reference
2431  }
2432  } else {
2433  DimensionRegions = 0;
2434  for (int i = 0 ; i < 8 ; i++) {
2436  pDimensionDefinitions[i].bits = 0;
2438  }
2439  }
2440 
2441  // make sure there is at least one dimension region
2442  if (!DimensionRegions) {
2443  RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2444  if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2445  RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2446  pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2447  DimensionRegions = 1;
2448  }
2449  }
2450 
2461  // in the gig format we don't care about the Region's sample reference
2462  // but we still have to provide some existing one to not corrupt the
2463  // file, so to avoid the latter we simply always assign the sample of
2464  // the first dimension region of this region
2466 
2467  // first update base class's chunks
2469 
2470  // update dimension region's chunks
2471  for (int i = 0; i < DimensionRegions; i++) {
2473  }
2474 
2475  File* pFile = (File*) GetParent()->GetParent();
2476  bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2477  const int iMaxDimensions = version3 ? 8 : 5;
2478  const int iMaxDimensionRegions = version3 ? 256 : 32;
2479 
2480  // make sure '3lnk' chunk exists
2482  if (!_3lnk) {
2483  const int _3lnkChunkSize = version3 ? 1092 : 172;
2484  _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2485  memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2486 
2487  // move 3prg to last position
2489  }
2490 
2491  // update dimension definitions in '3lnk' chunk
2492  uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2493  store32(&pData[0], DimensionRegions);
2494  int shift = 0;
2495  for (int i = 0; i < iMaxDimensions; i++) {
2496  pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2497  pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2498  pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2499  pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2500  pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2501  // next 3 bytes unknown, always zero?
2502 
2503  shift += pDimensionDefinitions[i].bits;
2504  }
2505 
2506  // update wave pool table in '3lnk' chunk
2507  const int iWavePoolOffset = version3 ? 68 : 44;
2508  for (uint i = 0; i < iMaxDimensionRegions; i++) {
2509  int iWaveIndex = -1;
2510  if (i < DimensionRegions) {
2511  if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2512  File::SampleList::iterator iter = pFile->pSamples->begin();
2513  File::SampleList::iterator end = pFile->pSamples->end();
2514  for (int index = 0; iter != end; ++iter, ++index) {
2515  if (*iter == pDimensionRegions[i]->pSample) {
2516  iWaveIndex = index;
2517  break;
2518  }
2519  }
2520  }
2521  store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2522  }
2523  }
2524 
2526  RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2527  if (_3prg) {
2528  int dimensionRegionNr = 0;
2529  RIFF::List* _3ewl = _3prg->GetFirstSubList();
2530  while (_3ewl) {
2531  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2532  pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2533  dimensionRegionNr++;
2534  }
2535  _3ewl = _3prg->GetNextSubList();
2536  }
2537  if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2538  }
2539  }
2540 
2541  void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2542  // update KeyRange struct and make sure regions are in correct order
2543  DLS::Region::SetKeyRange(Low, High);
2544  // update Region key table for fast lookup
2545  ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2546  }
2547 
2549  // get velocity dimension's index
2550  int veldim = -1;
2551  for (int i = 0 ; i < Dimensions ; i++) {
2552  if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2553  veldim = i;
2554  break;
2555  }
2556  }
2557  if (veldim == -1) return;
2558 
2559  int step = 1;
2560  for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2561  int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2562  int end = step * pDimensionDefinitions[veldim].zones;
2563 
2564  // loop through all dimension regions for all dimensions except the velocity dimension
2565  int dim[8] = { 0 };
2566  for (int i = 0 ; i < DimensionRegions ; i++) {
2567 
2568  if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2569  pDimensionRegions[i]->VelocityUpperLimit) {
2570  // create the velocity table
2571  uint8_t* table = pDimensionRegions[i]->VelocityTable;
2572  if (!table) {
2573  table = new uint8_t[128];
2574  pDimensionRegions[i]->VelocityTable = table;
2575  }
2576  int tableidx = 0;
2577  int velocityZone = 0;
2578  if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2579  for (int k = i ; k < end ; k += step) {
2581  for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2582  velocityZone++;
2583  }
2584  } else { // gig2
2585  for (int k = i ; k < end ; k += step) {
2587  for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2588  velocityZone++;
2589  }
2590  }
2591  } else {
2592  if (pDimensionRegions[i]->VelocityTable) {
2593  delete[] pDimensionRegions[i]->VelocityTable;
2595  }
2596  }
2597 
2598  int j;
2599  int shift = 0;
2600  for (j = 0 ; j < Dimensions ; j++) {
2601  if (j == veldim) i += skipveldim; // skip velocity dimension
2602  else {
2603  dim[j]++;
2604  if (dim[j] < pDimensionDefinitions[j].zones) break;
2605  else {
2606  // skip unused dimension regions
2607  dim[j] = 0;
2608  i += ((1 << pDimensionDefinitions[j].bits) -
2609  pDimensionDefinitions[j].zones) << shift;
2610  }
2611  }
2612  shift += pDimensionDefinitions[j].bits;
2613  }
2614  if (j == Dimensions) break;
2615  }
2616  }
2617 
2634  // check if max. amount of dimensions reached
2635  File* file = (File*) GetParent()->GetParent();
2636  const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2637  if (Dimensions >= iMaxDimensions)
2638  throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2639  // check if max. amount of dimension bits reached
2640  int iCurrentBits = 0;
2641  for (int i = 0; i < Dimensions; i++)
2642  iCurrentBits += pDimensionDefinitions[i].bits;
2643  if (iCurrentBits >= iMaxDimensions)
2644  throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2645  const int iNewBits = iCurrentBits + pDimDef->bits;
2646  if (iNewBits > iMaxDimensions)
2647  throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2648  // check if there's already a dimensions of the same type
2649  for (int i = 0; i < Dimensions; i++)
2650  if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2651  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2652 
2653  // pos is where the new dimension should be placed, normally
2654  // last in list, except for the samplechannel dimension which
2655  // has to be first in list
2656  int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2657  int bitpos = 0;
2658  for (int i = 0 ; i < pos ; i++)
2659  bitpos += pDimensionDefinitions[i].bits;
2660 
2661  // make room for the new dimension
2662  for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2663  for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2664  for (int j = Dimensions ; j > pos ; j--) {
2667  }
2668  }
2669 
2670  // assign definition of new dimension
2671  pDimensionDefinitions[pos] = *pDimDef;
2672 
2673  // auto correct certain dimension definition fields (where possible)
2675  __resolveSplitType(pDimensionDefinitions[pos].dimension);
2677  __resolveZoneSize(pDimensionDefinitions[pos]);
2678 
2679  // create new dimension region(s) for this new dimension, and make
2680  // sure that the dimension regions are placed correctly in both the
2681  // RIFF list and the pDimensionRegions array
2682  RIFF::Chunk* moveTo = NULL;
2684  for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2685  for (int k = 0 ; k < (1 << bitpos) ; k++) {
2686  pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2687  }
2688  for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2689  for (int k = 0 ; k < (1 << bitpos) ; k++) {
2690  RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2691  if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2692  // create a new dimension region and copy all parameter values from
2693  // an existing dimension region
2694  pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2695  new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2696 
2697  DimensionRegions++;
2698  }
2699  }
2700  moveTo = pDimensionRegions[i]->pParentList;
2701  }
2702 
2703  // initialize the upper limits for this dimension
2704  int mask = (1 << bitpos) - 1;
2705  for (int z = 0 ; z < pDimDef->zones ; z++) {
2706  uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2707  for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2708  pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2709  (z << bitpos) |
2710  (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2711  }
2712  }
2713 
2714  Dimensions++;
2715 
2716  // if this is a layer dimension, update 'Layers' attribute
2717  if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2718 
2720  }
2721 
2734  // get dimension's index
2735  int iDimensionNr = -1;
2736  for (int i = 0; i < Dimensions; i++) {
2737  if (&pDimensionDefinitions[i] == pDimDef) {
2738  iDimensionNr = i;
2739  break;
2740  }
2741  }
2742  if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2743 
2744  // get amount of bits below the dimension to delete
2745  int iLowerBits = 0;
2746  for (int i = 0; i < iDimensionNr; i++)
2747  iLowerBits += pDimensionDefinitions[i].bits;
2748 
2749  // get amount ot bits above the dimension to delete
2750  int iUpperBits = 0;
2751  for (int i = iDimensionNr + 1; i < Dimensions; i++)
2752  iUpperBits += pDimensionDefinitions[i].bits;
2753 
2755 
2756  // delete dimension regions which belong to the given dimension
2757  // (that is where the dimension's bit > 0)
2758  for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2759  for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2760  for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2761  int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2762  iObsoleteBit << iLowerBits |
2763  iLowerBit;
2764 
2765  _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2766  delete pDimensionRegions[iToDelete];
2767  pDimensionRegions[iToDelete] = NULL;
2768  DimensionRegions--;
2769  }
2770  }
2771  }
2772 
2773  // defrag pDimensionRegions array
2774  // (that is remove the NULL spaces within the pDimensionRegions array)
2775  for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2776  if (!pDimensionRegions[iTo]) {
2777  if (iFrom <= iTo) iFrom = iTo + 1;
2778  while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2779  if (iFrom < 256 && pDimensionRegions[iFrom]) {
2780  pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2781  pDimensionRegions[iFrom] = NULL;
2782  }
2783  }
2784  }
2785 
2786  // remove the this dimension from the upper limits arrays
2787  for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2788  DimensionRegion* d = pDimensionRegions[j];
2789  for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2790  d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2791  }
2792  d->DimensionUpperLimits[Dimensions - 1] = 127;
2793  }
2794 
2795  // 'remove' dimension definition
2796  for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2798  }
2800  pDimensionDefinitions[Dimensions - 1].bits = 0;
2801  pDimensionDefinitions[Dimensions - 1].zones = 0;
2802 
2803  Dimensions--;
2804 
2805  // if this was a layer dimension, update 'Layers' attribute
2806  if (pDimDef->dimension == dimension_layer) Layers = 1;
2807  }
2808 
2810  for (int i = 0; i < 256; i++) {
2811  if (pDimensionRegions[i]) delete pDimensionRegions[i];
2812  }
2813  }
2814 
2834  uint8_t bits;
2835  int veldim = -1;
2836  int velbitpos;
2837  int bitpos = 0;
2838  int dimregidx = 0;
2839  for (uint i = 0; i < Dimensions; i++) {
2840  if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2841  // the velocity dimension must be handled after the other dimensions
2842  veldim = i;
2843  velbitpos = bitpos;
2844  } else {
2845  switch (pDimensionDefinitions[i].split_type) {
2846  case split_type_normal:
2847  if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2848  // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2849  for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2850  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2851  }
2852  } else {
2853  // gig2: evenly sized zones
2854  bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2855  }
2856  break;
2857  case split_type_bit: // the value is already the sought dimension bit number
2858  const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2859  bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2860  break;
2861  }
2862  dimregidx |= bits << bitpos;
2863  }
2864  bitpos += pDimensionDefinitions[i].bits;
2865  }
2866  DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2867  if (veldim != -1) {
2868  // (dimreg is now the dimension region for the lowest velocity)
2869  if (dimreg->VelocityTable) // custom defined zone ranges
2870  bits = dimreg->VelocityTable[DimValues[veldim]];
2871  else // normal split type
2872  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2873 
2874  dimregidx |= bits << velbitpos;
2875  dimreg = pDimensionRegions[dimregidx];
2876  }
2877  return dimreg;
2878  }
2879 
2891  return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2892  << pDimensionDefinitions[5].bits | DimBits[5])
2893  << pDimensionDefinitions[4].bits | DimBits[4])
2894  << pDimensionDefinitions[3].bits | DimBits[3])
2895  << pDimensionDefinitions[2].bits | DimBits[2])
2896  << pDimensionDefinitions[1].bits | DimBits[1])
2897  << pDimensionDefinitions[0].bits | DimBits[0]];
2898  }
2899 
2910  if (pSample) return static_cast<gig::Sample*>(pSample);
2911  else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2912  }
2913 
2914  Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2915  if ((int32_t)WavePoolTableIndex == -1) return NULL;
2916  File* file = (File*) GetParent()->GetParent();
2917  if (!file->pWavePoolTable) return NULL;
2918  unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2919  unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2920  Sample* sample = file->GetFirstSample(pProgress);
2921  while (sample) {
2922  if (sample->ulWavePoolOffset == soughtoffset &&
2923  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2924  sample = file->GetNextSample();
2925  }
2926  return NULL;
2927  }
2928 
2929 
2930 // *************** MidiRule ***************
2931 // *
2932 
2934  _3ewg->SetPos(36);
2935  Triggers = _3ewg->ReadUint8();
2936  _3ewg->SetPos(40);
2937  ControllerNumber = _3ewg->ReadUint8();
2938  _3ewg->SetPos(46);
2939  for (int i = 0 ; i < Triggers ; i++) {
2940  pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
2941  pTriggers[i].Descending = _3ewg->ReadUint8();
2942  pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
2943  pTriggers[i].Key = _3ewg->ReadUint8();
2944  pTriggers[i].NoteOff = _3ewg->ReadUint8();
2945  pTriggers[i].Velocity = _3ewg->ReadUint8();
2946  pTriggers[i].OverridePedal = _3ewg->ReadUint8();
2947  _3ewg->ReadUint8();
2948  }
2949 }
2950 
2951 
2952 // *************** Instrument ***************
2953 // *
2954 
2955  Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2956  static const DLS::Info::string_length_t fixedStringLengths[] = {
2957  { CHUNK_ID_INAM, 64 },
2958  { CHUNK_ID_ISFT, 12 },
2959  { 0, 0 }
2960  };
2961  pInfo->SetFixedStringLengths(fixedStringLengths);
2962 
2963  // Initialization
2964  for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2965  EffectSend = 0;
2966  Attenuation = 0;
2967  FineTune = 0;
2968  PitchbendRange = 0;
2969  PianoReleaseMode = false;
2970  DimensionKeyRange.low = 0;
2971  DimensionKeyRange.high = 0;
2972  pMidiRules = new MidiRule*[3];
2973  pMidiRules[0] = NULL;
2974 
2975  // Loading
2976  RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2977  if (lart) {
2978  RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2979  if (_3ewg) {
2980  EffectSend = _3ewg->ReadUint16();
2981  Attenuation = _3ewg->ReadInt32();
2982  FineTune = _3ewg->ReadInt16();
2983  PitchbendRange = _3ewg->ReadInt16();
2984  uint8_t dimkeystart = _3ewg->ReadUint8();
2985  PianoReleaseMode = dimkeystart & 0x01;
2986  DimensionKeyRange.low = dimkeystart >> 1;
2987  DimensionKeyRange.high = _3ewg->ReadUint8();
2988 
2989  if (_3ewg->GetSize() > 32) {
2990  // read MIDI rules
2991  int i = 0;
2992  _3ewg->SetPos(32);
2993  uint8_t id1 = _3ewg->ReadUint8();
2994  uint8_t id2 = _3ewg->ReadUint8();
2995 
2996  if (id1 == 4 && id2 == 16) {
2997  pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
2998  }
2999  //TODO: all the other types of rules
3000 
3001  pMidiRules[i] = NULL;
3002  }
3003  }
3004  }
3005 
3006  if (pFile->GetAutoLoad()) {
3007  if (!pRegions) pRegions = new RegionList;
3008  RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3009  if (lrgn) {
3010  RIFF::List* rgn = lrgn->GetFirstSubList();
3011  while (rgn) {
3012  if (rgn->GetListType() == LIST_TYPE_RGN) {
3013  __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3014  pRegions->push_back(new Region(this, rgn));
3015  }
3016  rgn = lrgn->GetNextSubList();
3017  }
3018  // Creating Region Key Table for fast lookup
3020  }
3021  }
3022 
3023  __notify_progress(pProgress, 1.0f); // notify done
3024  }
3025 
3027  for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3028  RegionList::iterator iter = pRegions->begin();
3029  RegionList::iterator end = pRegions->end();
3030  for (; iter != end; ++iter) {
3031  gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3032  for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3033  RegionKeyTable[iKey] = pRegion;
3034  }
3035  }
3036  }
3037 
3039  for (int i = 0 ; pMidiRules[i] ; i++) {
3040  delete pMidiRules[i];
3041  }
3042  delete[] pMidiRules;
3043  }
3044 
3055  // first update base classes' chunks
3057 
3058  // update Regions' chunks
3059  {
3060  RegionList::iterator iter = pRegions->begin();
3061  RegionList::iterator end = pRegions->end();
3062  for (; iter != end; ++iter)
3063  (*iter)->UpdateChunks();
3064  }
3065 
3066  // make sure 'lart' RIFF list chunk exists
3068  if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3069  // make sure '3ewg' RIFF chunk exists
3070  RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3071  if (!_3ewg) {
3072  File* pFile = (File*) GetParent();
3073 
3074  // 3ewg is bigger in gig3, as it includes the iMIDI rules
3075  int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3076  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3077  memset(_3ewg->LoadChunkData(), 0, size);
3078  }
3079  // update '3ewg' RIFF chunk
3080  uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3081  store16(&pData[0], EffectSend);
3082  store32(&pData[2], Attenuation);
3083  store16(&pData[6], FineTune);
3084  store16(&pData[8], PitchbendRange);
3085  const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3086  DimensionKeyRange.low << 1;
3087  pData[10] = dimkeystart;
3088  pData[11] = DimensionKeyRange.high;
3089  }
3090 
3098  Region* Instrument::GetRegion(unsigned int Key) {
3099  if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3100  return RegionKeyTable[Key];
3101 
3102  /*for (int i = 0; i < Regions; i++) {
3103  if (Key <= pRegions[i]->KeyRange.high &&
3104  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3105  }
3106  return NULL;*/
3107  }
3108 
3117  if (!pRegions) return NULL;
3118  RegionsIterator = pRegions->begin();
3119  return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3120  }
3121 
3131  if (!pRegions) return NULL;
3132  RegionsIterator++;
3133  return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3134  }
3135 
3137  // create new Region object (and its RIFF chunks)
3139  if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3140  RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3141  Region* pNewRegion = new Region(this, rgn);
3142  pRegions->push_back(pNewRegion);
3143  Regions = pRegions->size();
3144  // update Region key table for fast lookup
3146  // done
3147  return pNewRegion;
3148  }
3149 
3151  if (!pRegions) return;
3153  // update Region key table for fast lookup
3155  }
3156 
3168  return pMidiRules[i];
3169  }
3170 
3171 
3172 // *************** Group ***************
3173 // *
3174 
3181  Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3182  pFile = file;
3183  pNameChunk = ck3gnm;
3184  ::LoadString(pNameChunk, Name);
3185  }
3186 
3188  // remove the chunk associated with this group (if any)
3189  if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3190  }
3191 
3201  // make sure <3gri> and <3gnl> list chunks exist
3202  RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3203  if (!_3gri) {
3204  _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3205  pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3206  }
3207  RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3208  if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3209 
3210  if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3211  // v3 has a fixed list of 128 strings, find a free one
3212  for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3213  if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3214  pNameChunk = ck;
3215  break;
3216  }
3217  }
3218  }
3219 
3220  // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3221  ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3222  }
3223 
3236  // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3237  for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3238  if (pSample->GetGroup() == this) return pSample;
3239  }
3240  return NULL;
3241  }
3242 
3254  // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3255  for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3256  if (pSample->GetGroup() == this) return pSample;
3257  }
3258  return NULL;
3259  }
3260 
3264  void Group::AddSample(Sample* pSample) {
3265  pSample->pGroup = this;
3266  }
3267 
3275  // get "that" other group first
3276  Group* pOtherGroup = NULL;
3277  for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3278  if (pOtherGroup != this) break;
3279  }
3280  if (!pOtherGroup) throw Exception(
3281  "Could not move samples to another group, since there is no "
3282  "other Group. This is a bug, report it!"
3283  );
3284  // now move all samples of this group to the other group
3285  for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3286  pOtherGroup->AddSample(pSample);
3287  }
3288  }
3289 
3290 
3291 
3292 // *************** File ***************
3293 // *
3294 
3297  0, 2, 19980628 & 0xffff, 19980628 >> 16
3298  };
3299 
3302  0, 3, 20030331 & 0xffff, 20030331 >> 16
3303  };
3304 
3305  static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3306  { CHUNK_ID_IARL, 256 },
3307  { CHUNK_ID_IART, 128 },
3308  { CHUNK_ID_ICMS, 128 },
3309  { CHUNK_ID_ICMT, 1024 },
3310  { CHUNK_ID_ICOP, 128 },
3311  { CHUNK_ID_ICRD, 128 },
3312  { CHUNK_ID_IENG, 128 },
3313  { CHUNK_ID_IGNR, 128 },
3314  { CHUNK_ID_IKEY, 128 },
3315  { CHUNK_ID_IMED, 128 },
3316  { CHUNK_ID_INAM, 128 },
3317  { CHUNK_ID_IPRD, 128 },
3318  { CHUNK_ID_ISBJ, 128 },
3319  { CHUNK_ID_ISFT, 128 },
3320  { CHUNK_ID_ISRC, 128 },
3321  { CHUNK_ID_ISRF, 128 },
3322  { CHUNK_ID_ITCH, 128 },
3323  { 0, 0 }
3324  };
3325 
3327  bAutoLoad = true;
3328  *pVersion = VERSION_3;
3329  pGroups = NULL;
3330  pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3331  pInfo->ArchivalLocation = String(256, ' ');
3332 
3333  // add some mandatory chunks to get the file chunks in right
3334  // order (INFO chunk will be moved to first position later)
3338 
3339  GenerateDLSID();
3340  }
3341 
3342  File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3343  bAutoLoad = true;
3344  pGroups = NULL;
3345  pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3346  }
3347 
3349  if (pGroups) {
3350  std::list<Group*>::iterator iter = pGroups->begin();
3351  std::list<Group*>::iterator end = pGroups->end();
3352  while (iter != end) {
3353  delete *iter;
3354  ++iter;
3355  }
3356  delete pGroups;
3357  }
3358  }
3359 
3361  if (!pSamples) LoadSamples(pProgress);
3362  if (!pSamples) return NULL;
3363  SamplesIterator = pSamples->begin();
3364  return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3365  }
3366 
3368  if (!pSamples) return NULL;
3369  SamplesIterator++;
3370  return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3371  }
3372 
3381  if (!pSamples) LoadSamples();
3384  // create new Sample object and its respective 'wave' list chunk
3385  RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3386  Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3387 
3388  // add mandatory chunks to get the chunks in right order
3389  wave->AddSubChunk(CHUNK_ID_FMT, 16);
3390  wave->AddSubList(LIST_TYPE_INFO);
3391 
3392  pSamples->push_back(pSample);
3393  return pSample;
3394  }
3395 
3405  void File::DeleteSample(Sample* pSample) {
3406  if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3407  SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3408  if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3409  if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3410  pSamples->erase(iter);
3411  delete pSample;
3412 
3413  SampleList::iterator tmp = SamplesIterator;
3414  // remove all references to the sample
3415  for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3416  instrument = GetNextInstrument()) {
3417  for (Region* region = instrument->GetFirstRegion() ; region ;
3418  region = instrument->GetNextRegion()) {
3419 
3420  if (region->GetSample() == pSample) region->SetSample(NULL);
3421 
3422  for (int i = 0 ; i < region->DimensionRegions ; i++) {
3423  gig::DimensionRegion *d = region->pDimensionRegions[i];
3424  if (d->pSample == pSample) d->pSample = NULL;
3425  }
3426  }
3427  }
3428  SamplesIterator = tmp; // restore iterator
3429  }
3430 
3432  LoadSamples(NULL);
3433  }
3434 
3435  void File::LoadSamples(progress_t* pProgress) {
3436  // Groups must be loaded before samples, because samples will try
3437  // to resolve the group they belong to
3438  if (!pGroups) LoadGroups();
3439 
3440  if (!pSamples) pSamples = new SampleList;
3441 
3442  RIFF::File* file = pRIFF;
3443 
3444  // just for progress calculation
3445  int iSampleIndex = 0;
3446  int iTotalSamples = WavePoolCount;
3447 
3448  // check if samples should be loaded from extension files
3449  int lastFileNo = 0;
3450  for (int i = 0 ; i < WavePoolCount ; i++) {
3451  if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3452  }
3453  String name(pRIFF->GetFileName());
3454  int nameLen = name.length();
3455  char suffix[6];
3456  if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3457 
3458  for (int fileNo = 0 ; ; ) {
3459  RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3460  if (wvpl) {
3461  unsigned long wvplFileOffset = wvpl->GetFilePos();
3462  RIFF::List* wave = wvpl->GetFirstSubList();
3463  while (wave) {
3464  if (wave->GetListType() == LIST_TYPE_WAVE) {
3465  // notify current progress
3466  const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3467  __notify_progress(pProgress, subprogress);
3468 
3469  unsigned long waveFileOffset = wave->GetFilePos();
3470  pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3471 
3472  iSampleIndex++;
3473  }
3474  wave = wvpl->GetNextSubList();
3475  }
3476 
3477  if (fileNo == lastFileNo) break;
3478 
3479  // open extension file (*.gx01, *.gx02, ...)
3480  fileNo++;
3481  sprintf(suffix, ".gx%02d", fileNo);
3482  name.replace(nameLen, 5, suffix);
3483  file = new RIFF::File(name);
3484  ExtensionFiles.push_back(file);
3485  } else break;
3486  }
3487 
3488  __notify_progress(pProgress, 1.0); // notify done
3489  }
3490 
3492  if (!pInstruments) LoadInstruments();
3493  if (!pInstruments) return NULL;
3494  InstrumentsIterator = pInstruments->begin();
3495  return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3496  }
3497 
3499  if (!pInstruments) return NULL;
3501  return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3502  }
3503 
3511  Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3512  if (!pInstruments) {
3513  // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3514 
3515  // sample loading subtask
3516  progress_t subprogress;
3517  __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3518  __notify_progress(&subprogress, 0.0f);
3519  if (GetAutoLoad())
3520  GetFirstSample(&subprogress); // now force all samples to be loaded
3521  __notify_progress(&subprogress, 1.0f);
3522 
3523  // instrument loading subtask
3524  if (pProgress && pProgress->callback) {
3525  subprogress.__range_min = subprogress.__range_max;
3526  subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3527  }
3528  __notify_progress(&subprogress, 0.0f);
3529  LoadInstruments(&subprogress);
3530  __notify_progress(&subprogress, 1.0f);
3531  }
3532  if (!pInstruments) return NULL;
3533  InstrumentsIterator = pInstruments->begin();
3534  for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3535  if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3537  }
3538  return NULL;
3539  }
3540 
3549  if (!pInstruments) LoadInstruments();
3551  RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3552  RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3553 
3554  // add mandatory chunks to get the chunks in right order
3555  lstInstr->AddSubList(LIST_TYPE_INFO);
3556  lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3557 
3558  Instrument* pInstrument = new Instrument(this, lstInstr);
3559  pInstrument->GenerateDLSID();
3560 
3561  lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3562 
3563  // this string is needed for the gig to be loadable in GSt:
3564  pInstrument->pInfo->Software = "Endless Wave";
3565 
3566  pInstruments->push_back(pInstrument);
3567  return pInstrument;
3568  }
3569 
3578  void File::DeleteInstrument(Instrument* pInstrument) {
3579  if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3580  InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3581  if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3582  pInstruments->erase(iter);
3583  delete pInstrument;
3584  }
3585 
3587  LoadInstruments(NULL);
3588  }
3589 
3592  RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3593  if (lstInstruments) {
3594  int iInstrumentIndex = 0;
3595  RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3596  while (lstInstr) {
3597  if (lstInstr->GetListType() == LIST_TYPE_INS) {
3598  // notify current progress
3599  const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3600  __notify_progress(pProgress, localProgress);
3601 
3602  // divide local progress into subprogress for loading current Instrument
3603  progress_t subprogress;
3604  __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3605 
3606  pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3607 
3608  iInstrumentIndex++;
3609  }
3610  lstInstr = lstInstruments->GetNextSubList();
3611  }
3612  __notify_progress(pProgress, 1.0); // notify done
3613  }
3614  }
3615 
3619  void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3621  if (!_3crc) return;
3622 
3623  // get the index of the sample
3624  int iWaveIndex = -1;
3625  File::SampleList::iterator iter = pSamples->begin();
3626  File::SampleList::iterator end = pSamples->end();
3627  for (int index = 0; iter != end; ++iter, ++index) {
3628  if (*iter == pSample) {
3629  iWaveIndex = index;
3630  break;
3631  }
3632  }
3633  if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3634 
3635  // write the CRC-32 checksum to disk
3636  _3crc->SetPos(iWaveIndex * 8);
3637  uint32_t tmp = 1;
3638  _3crc->WriteUint32(&tmp); // unknown, always 1?
3639  _3crc->WriteUint32(&crc);
3640  }
3641 
3643  if (!pGroups) LoadGroups();
3644  // there must always be at least one group
3645  GroupsIterator = pGroups->begin();
3646  return *GroupsIterator;
3647  }
3648 
3650  if (!pGroups) return NULL;
3651  ++GroupsIterator;
3652  return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3653  }
3654 
3661  Group* File::GetGroup(uint index) {
3662  if (!pGroups) LoadGroups();
3663  GroupsIterator = pGroups->begin();
3664  for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3665  if (i == index) return *GroupsIterator;
3666  ++GroupsIterator;
3667  }
3668  return NULL;
3669  }
3670 
3672  if (!pGroups) LoadGroups();
3673  // there must always be at least one group
3675  Group* pGroup = new Group(this, NULL);
3676  pGroups->push_back(pGroup);
3677  return pGroup;
3678  }
3679 
3689  void File::DeleteGroup(Group* pGroup) {
3690  if (!pGroups) LoadGroups();
3691  std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3692  if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3693  if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3694  // delete all members of this group
3695  for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3696  DeleteSample(pSample);
3697  }
3698  // now delete this group object
3699  pGroups->erase(iter);
3700  delete pGroup;
3701  }
3702 
3714  if (!pGroups) LoadGroups();
3715  std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3716  if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3717  if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3718  // move all members of this group to another group
3719  pGroup->MoveAll();
3720  pGroups->erase(iter);
3721  delete pGroup;
3722  }
3723 
3725  if (!pGroups) pGroups = new std::list<Group*>;
3726  // try to read defined groups from file
3728  if (lst3gri) {
3729  RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3730  if (lst3gnl) {
3731  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3732  while (ck) {
3733  if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3734  if (pVersion && pVersion->major == 3 &&
3735  strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3736 
3737  pGroups->push_back(new Group(this, ck));
3738  }
3739  ck = lst3gnl->GetNextSubChunk();
3740  }
3741  }
3742  }
3743  // if there were no group(s), create at least the mandatory default group
3744  if (!pGroups->size()) {
3745  Group* pGroup = new Group(this, NULL);
3746  pGroup->Name = "Default Group";
3747  pGroups->push_back(pGroup);
3748  }
3749  }
3750 
3762  bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3763 
3765 
3766  // first update base class's chunks
3768 
3769  if (newFile) {
3770  // INFO was added by Resource::UpdateChunks - make sure it
3771  // is placed first in file
3773  RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3774  if (first != info) {
3775  pRIFF->MoveSubChunk(info, first);
3776  }
3777  }
3778 
3779  // update group's chunks
3780  if (pGroups) {
3781  std::list<Group*>::iterator iter = pGroups->begin();
3782  std::list<Group*>::iterator end = pGroups->end();
3783  for (; iter != end; ++iter) {
3784  (*iter)->UpdateChunks();
3785  }
3786 
3787  // v3: make sure the file has 128 3gnm chunks
3788  if (pVersion && pVersion->major == 3) {
3790  RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3791  for (int i = 0 ; i < 128 ; i++) {
3792  if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3793  if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3794  }
3795  }
3796  }
3797 
3798  // update einf chunk
3799 
3800  // The einf chunk contains statistics about the gig file, such
3801  // as the number of regions and samples used by each
3802  // instrument. It is divided in equally sized parts, where the
3803  // first part contains information about the whole gig file,
3804  // and the rest of the parts map to each instrument in the
3805  // file.
3806  //
3807  // At the end of each part there is a bit map of each sample
3808  // in the file, where a set bit means that the sample is used
3809  // by the file/instrument.
3810  //
3811  // Note that there are several fields with unknown use. These
3812  // are set to zero.
3813 
3814  int sublen = pSamples->size() / 8 + 49;
3815  int einfSize = (Instruments + 1) * sublen;
3816 
3818  if (einf) {
3819  if (einf->GetSize() != einfSize) {
3820  einf->Resize(einfSize);
3821  memset(einf->LoadChunkData(), 0, einfSize);
3822  }
3823  } else if (newFile) {
3824  einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3825  }
3826  if (einf) {
3827  uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3828 
3829  std::map<gig::Sample*,int> sampleMap;
3830  int sampleIdx = 0;
3831  for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3832  sampleMap[pSample] = sampleIdx++;
3833  }
3834 
3835  int totnbusedsamples = 0;
3836  int totnbusedchannels = 0;
3837  int totnbregions = 0;
3838  int totnbdimregions = 0;
3839  int totnbloops = 0;
3840  int instrumentIdx = 0;
3841 
3842  memset(&pData[48], 0, sublen - 48);
3843 
3844  for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3845  instrument = GetNextInstrument()) {
3846  int nbusedsamples = 0;
3847  int nbusedchannels = 0;
3848  int nbdimregions = 0;
3849  int nbloops = 0;
3850 
3851  memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3852 
3853  for (Region* region = instrument->GetFirstRegion() ; region ;
3854  region = instrument->GetNextRegion()) {
3855  for (int i = 0 ; i < region->DimensionRegions ; i++) {
3856  gig::DimensionRegion *d = region->pDimensionRegions[i];
3857  if (d->pSample) {
3858  int sampleIdx = sampleMap[d->pSample];
3859  int byte = 48 + sampleIdx / 8;
3860  int bit = 1 << (sampleIdx & 7);
3861  if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3862  pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3863  nbusedsamples++;
3864  nbusedchannels += d->pSample->Channels;
3865 
3866  if ((pData[byte] & bit) == 0) {
3867  pData[byte] |= bit;
3868  totnbusedsamples++;
3869  totnbusedchannels += d->pSample->Channels;
3870  }
3871  }
3872  }
3873  if (d->SampleLoops) nbloops++;
3874  }
3875  nbdimregions += region->DimensionRegions;
3876  }
3877  // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3878  // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3879  store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3880  store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3881  store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3882  store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3883  store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3884  store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3885  // next 8 bytes unknown
3886  store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3887  store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3888  // next 4 bytes unknown
3889 
3890  totnbregions += instrument->Regions;
3891  totnbdimregions += nbdimregions;
3892  totnbloops += nbloops;
3893  instrumentIdx++;
3894  }
3895  // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3896  // store32(&pData[0], sublen);
3897  store32(&pData[4], totnbusedchannels);
3898  store32(&pData[8], totnbusedsamples);
3899  store32(&pData[12], Instruments);
3900  store32(&pData[16], totnbregions);
3901  store32(&pData[20], totnbdimregions);
3902  store32(&pData[24], totnbloops);
3903  // next 8 bytes unknown
3904  // next 4 bytes unknown, not always 0
3905  store32(&pData[40], pSamples->size());
3906  // next 4 bytes unknown
3907  }
3908 
3909  // update 3crc chunk
3910 
3911  // The 3crc chunk contains CRC-32 checksums for the
3912  // samples. The actual checksum values will be filled in
3913  // later, by Sample::Write.
3914 
3916  if (_3crc) {
3917  _3crc->Resize(pSamples->size() * 8);
3918  } else if (newFile) {
3919  _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3920  _3crc->LoadChunkData();
3921 
3922  // the order of einf and 3crc is not the same in v2 and v3
3923  if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3924  }
3925  }
3926 
3942  void File::SetAutoLoad(bool b) {
3943  bAutoLoad = b;
3944  }
3945 
3951  return bAutoLoad;
3952  }
3953 
3954 
3955 
3956 // *************** Exception ***************
3957 // *
3958 
3959  Exception::Exception(String Message) : DLS::Exception(Message) {
3960  }
3961 
3963  std::cout << "gig::Exception: " << Message << std::endl;
3964  }
3965 
3966 
3967 // *************** functions ***************
3968 // *
3969 
3976  return PACKAGE;
3977  }
3978 
3984  return VERSION;
3985  }
3986 
3987 } // namespace gig
bool LFO2FlipPhase
Inverts phase of the filter cutoff LFO wave.
Definition: gig.h:386
void UpdateRegionKeyTable()
Definition: gig.cpp:3026
#define CHUNK_ID_3GIX
Definition: gig.h:49
void MoveAll()
Move all members of this group to another group (preferably the 1st one except this).
Definition: gig.cpp:3274
#define LIST_TYPE_3GNL
Definition: gig.h:47
unsigned long WriteUint32(uint32_t *pData, unsigned long WordCount=1)
Writes WordCount number of 32 Bit unsigned integer words from the buffer pointed by pData to the chun...
Definition: RIFF.cpp:611
dim_bypass_ctrl_t DimensionBypass
If defined, the MIDI controller can switch on/off the dimension in realtime.
Definition: gig.h:420
~Instrument()
Destructor.
Definition: gig.cpp:3038
Encapsulates articulation information of a dimension region.
Definition: gig.h:345
range_t DimensionKeyRange
0-127 (where 0 means C1 and 127 means G9)
Definition: gig.h:687
sample_loop_t * pSampleLoops
Points to the beginning of a sample loop array, or is NULL if there are no loops defined.
Definition: DLS.h:364
#define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x)
Definition: gig.cpp:48
uint8_t VCFVelocityScale
(0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defi...
Definition: gig.h:403
unsigned long FrameOffset
Current offset (sample points) in current sample frame (for decompression only).
Definition: gig.h:571
bool reverse
If playback direction is currently backwards (in case there is a pingpong or reverse loop defined)...
Definition: gig.h:301
uint32_t Regions
Reflects the number of Region defintions this Instrument has.
Definition: DLS.h:454
Region * GetRegion(unsigned int Key)
Returns the appropriate Region for a triggered note.
Definition: gig.cpp:3098
void AddSample(Sample *pSample)
Move Sample given by pSample from another Group to this Group.
Definition: gig.cpp:3264
virtual void UpdateChunks()
Apply dimension region settings to the respective RIFF chunks.
Definition: gig.cpp:1616
virtual void UpdateChunks()
Apply Instrument with all its Regions to the respective RIFF chunks.
Definition: DLS.cpp:1135
Sample * AddSample()
Add a new sample.
Definition: gig.cpp:3380
bool VCFEnabled
If filter should be used.
Definition: gig.h:397
no SMPTE offset
Definition: gig.h:91
void AddDimension(dimension_def_t *pDimDef)
Einstein would have dreamed of it - create a new dimension.
Definition: gig.cpp:2633
stream_whence_t
File stream position dependent to these relations.
Definition: RIFF.h:134
uint32_t FineTune
Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x800000...
Definition: gig.h:533
unsigned long Read(void *pData, unsigned long WordCount, unsigned long WordSize)
Reads WordCount number of data words with given WordSize and copies it into a buffer pointed by pData...
Definition: RIFF.cpp:280
uint16_t LFO1ControlDepth
Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
Definition: gig.h:365
Chunk * GetFirstSubChunk()
Returns the first subchunk within the list.
Definition: RIFF.cpp:1023
lfo1_ctrl_t
Defines how LFO1 is controlled by.
Definition: gig.h:132
Group of Gigasampler objects.
Definition: gig.h:728
uint32_t LoopType
Defines how the waveform samples will be looped (appropriate loop types for the gig format are define...
Definition: DLS.h:228
uint8_t VCFVelocityDynamicRange
0x04 = lowest, 0x00 = highest .
Definition: gig.h:404
String Name
Stores the name of this Group.
Definition: gig.h:730
DimensionRegion * GetDimensionRegionByBit(const uint8_t DimBits[8])
Returns the appropriate DimensionRegion for the given dimension bit numbers (zone index)...
Definition: gig.cpp:2890
Special dimension for triggering samples on releasing a key.
Definition: gig.h:219
uint16_t PitchbendRange
Number of semitones pitchbend controller can pitch (default is 2).
Definition: gig.h:685
virtual void UpdateChunks()
Apply all the gig file's current instruments, samples, groups and settings to the respective RIFF chu...
Definition: gig.cpp:3761
double EG1Release
Release time of the sample amplitude EG (0.000 - 60.000s).
Definition: gig.h:356
unsigned long ReadAndLoop(void *pBuffer, unsigned long SampleCount, playback_state_t *pPlaybackState, DimensionRegion *pDimRgn, buffer_t *pExternalDecompressionBuffer=NULL)
Reads SampleCount number of sample points from the position stored in pPlaybackState into the buffer ...
Definition: gig.cpp:850
virtual ~File()
Definition: gig.cpp:3348
#define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)
Definition: gig.cpp:46
uint8_t Triggers
Number of triggers.
Definition: gig.h:652
#define LIST_TYPE_WAVE
Definition: DLS.h:76
#define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)
Definition: gig.cpp:51
virtual void UpdateChunks()
Apply Instrument with all its Regions to the respective RIFF chunks.
Definition: gig.cpp:3054
#define CHUNK_ID_ISBJ
Definition: DLS.h:96
uint32_t GetChunkID()
Chunk ID in unsigned integer representation.
Definition: RIFF.h:157
vcf_type_t VCFType
Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
Definition: gig.h:398
#define CHUNK_ID_ICMT
Definition: DLS.h:87
virtual void SetKeyRange(uint16_t Low, uint16_t High)
Modifies the key range of this Region and makes sure the respective chunks are in correct order...
Definition: DLS.cpp:944
void __ensureMandatoryChunksExist()
Checks if all (for DLS) mandatory chunks exist, if not they will be created.
Definition: DLS.cpp:1533
uint32_t LoopSize
Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Len...
Definition: gig.h:541
Instrument * AddInstrument()
Add a new instrument definition.
Definition: gig.cpp:3548
loop_type_t LoopType
Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The ...
Definition: gig.h:538
lfo1_ctrl_t LFO1Controller
MIDI Controller which controls sample amplitude LFO.
Definition: gig.h:366
Group * AddGroup()
Definition: gig.cpp:3671
#define CHUNK_ID_ISRF
Definition: DLS.h:99
#define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)
Definition: gig.cpp:44
#define LIST_TYPE_LART
Definition: DLS.h:80
Only internally controlled.
Definition: gig.h:124
Sample * GetFirstSample()
Returns a pointer to the first Sample object of the file, NULL otherwise.
Definition: DLS.cpp:1298
uint8_t low
Low value of range.
Definition: gig.h:66
uint16_t SampleStartOffset
Number of samples the sample start should be moved (0 - 2000).
Definition: gig.h:429
MIDI rule for triggering notes by control change events.
Definition: gig.h:649
#define CHUNK_ID_PTBL
Definition: DLS.h:108
uint8_t Key
Key to trigger.
Definition: gig.h:657
unsigned long WorstCaseFrameSize
For compressed samples only: size (in bytes) of the largest possible sample frame.
Definition: gig.h:575
#define LIST_TYPE_WVPL
Definition: DLS.h:74
String GetFileName()
Definition: RIFF.cpp:1458
RIFF::List * pCkRegion
Definition: DLS.h:435
bool EG1Hold
If true, Decay1 stage should be postponed until the sample reached the sample loop start...
Definition: gig.h:357
RIFF::Chunk * pCk3gix
Definition: gig.h:579
dimension values are already the sought bit number
Definition: gig.h:256
uint8_t VelocityResponseCurveScaling
0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead)...
Definition: gig.h:413
bool Descending
If the change in CC value should be downwards.
Definition: gig.h:655
double GetVelocityCutoff(uint8_t MIDIKeyVelocity)
Definition: gig.cpp:2202
unsigned long Size
Size of the actual data in the buffer in bytes.
Definition: gig.h:73
Instrument * GetFirstInstrument()
Returns a pointer to the first Instrument object of the file, NULL otherwise.
Definition: gig.cpp:3491
unsigned long SetPos(unsigned long Where, stream_whence_t Whence=stream_start)
Sets the position within the chunk body, thus within the data portion of the chunk (in bytes)...
Definition: RIFF.cpp:199
Region * RegionKeyTable[128]
fast lookup for the corresponding Region of a MIDI key
Definition: gig.h:702
unsigned long GetSize()
Returns sample size.
Definition: DLS.cpp:727
Sample(File *pFile, RIFF::List *waveList, unsigned long WavePoolOffset, unsigned long fileNo=0)
Constructor.
Definition: gig.cpp:369
#define CHUNK_ID_3EWA
Definition: gig.h:50
uint32_t * pWavePoolTable
Definition: DLS.h:513
For MIDI tools like legato and repetition mode.
Definition: gig.h:223
bool VCFKeyboardTracking
If true: VCF cutoff frequence will be dependend to the note key position relative to the defined brea...
Definition: gig.h:408
#define CHUNK_ID_IMED
Definition: DLS.h:93
uint32_t WavePoolTableIndex
Definition: DLS.h:436
uint8_t Velocity
Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller...
Definition: gig.h:659
Defines a controller that has a certain contrained influence on a particular synthesis parameter (use...
Definition: gig.h:173
uint16_t Channels
Number of channels represented in the waveform data, e.g. 1 for mono, 2 for stereo (defaults to 1=mon...
Definition: DLS.h:389
void SetVCFVelocityScale(uint8_t scaling)
Updates the respective member variable and the lookup table / cache that depends on this value...
Definition: gig.cpp:2291
RIFF::List * pCkInstrument
Definition: DLS.h:468
Defines Region information of an Instrument.
Definition: gig.h:616
#define GIG_EXP_ENCODE(x)
Definition: gig.cpp:41
unsigned long GetPos()
Returns the current position in the sample (in sample points).
Definition: gig.cpp:811
uint32_t SamplerOptions
Definition: DLS.h:373
void UpdateVelocityTable()
Definition: gig.cpp:2548
#define CHUNK_ID_ICOP
Definition: DLS.h:88
unsigned long SamplesPerFrame
For compressed samples only: number of samples in a full sample frame.
Definition: gig.h:576
uint32_t LoopPlayCount
Number of times the loop should be played (a value of 0 = infinite).
Definition: gig.h:543
uint8_t ReleaseTriggerDecay
0 - 8
Definition: gig.h:416
void GenerateDLSID()
Generates a new DLSID for the resource.
Definition: DLS.cpp:450
lfo3_ctrl_t LFO3Controller
MIDI Controller which controls the sample pitch LFO.
Definition: gig.h:394
static unsigned int Instances
Number of instances of class Sample.
Definition: gig.h:568
uint32_t MIDIUnityNote
Specifies the musical note at which the sample will be played at it's original sample rate...
Definition: gig.h:532
uint8_t ControllerNumber
MIDI controller number.
Definition: gig.h:651
#define GIG_PITCH_TRACK_EXTRACT(x)
Definition: gig.cpp:42
List * GetSubList(uint32_t ListType)
Returns sublist chunk with list type ListType within this chunk list.
Definition: RIFF.cpp:998
void DeleteSubChunk(Chunk *pSubChunk)
Removes a sub chunk.
Definition: RIFF.cpp:1218
uint8_t ChannelOffset
Audio output where the audio signal of the dimension region should be routed to (0 - 9)...
Definition: gig.h:426
void Resize(int iNewSize)
Resize sample.
Definition: gig.cpp:751
Defines Sample Loop Points.
Definition: DLS.h:226
uint8_t VCFResonance
Firm internal filter resonance weight.
Definition: gig.h:405
bool VCFResonanceDynamic
If true: Increases the resonance Q according to changes of controllers that actually control the VCF ...
Definition: gig.h:406
unsigned int Dimensions
Number of defined dimensions, do not alter!
Definition: gig.h:618
Only controlled by external modulation wheel.
Definition: gig.h:116
#define GIG_VCF_RESONANCE_CTRL_ENCODE(x)
Definition: gig.cpp:45
vcf_cutoff_ctrl_t VCFCutoffController
Specifies which external controller has influence on the filter cutoff frequency. ...
Definition: gig.h:399
virtual void SetGain(int32_t gain)
Definition: DLS.cpp:531
unsigned long RemainingBytes()
Returns the number of bytes left to read in the chunk body.
Definition: RIFF.cpp:231
double EG1Decay1
Decay time of the sample amplitude EG (0.000 - 60.000s).
Definition: gig.h:352
List * GetFirstSubList()
Returns the first sublist within the list (that is a subchunk with chunk ID "LIST").
Definition: RIFF.cpp:1057
float __range_min
Only for internal usage, do not modify!
Definition: gig.h:321
DimensionRegion * GetDimensionRegionByValue(const uint DimValues[8])
Use this method in your audio engine to get the appropriate dimension region with it's articulation d...
Definition: gig.cpp:2833
virtual void UpdateChunks()
Apply Region settings and all its DimensionRegions to the respective RIFF chunks. ...
Definition: gig.cpp:2460
lfo2_ctrl_t LFO2Controller
MIDI Controlle which controls the filter cutoff LFO.
Definition: gig.h:385
#define LIST_TYPE_INFO
Definition: DLS.h:73
RIFF::List * pParentList
Definition: DLS.h:371
#define CHUNK_ID_SMPL
Definition: gig.h:48
void LoadDimensionRegions(RIFF::List *rgn)
Definition: gig.cpp:2525
Different samples triggered each time a note is played, any key advances the counter.
Definition: gig.h:224
bool Dithered
For 24-bit compressed samples only: if dithering was used during compression with bit reduction...
Definition: gig.h:546
Region * GetFirstRegion()
Returns the first Region of the instrument.
Definition: gig.cpp:3116
String libraryVersion()
Returns version of this C++ library.
Definition: gig.cpp:3983
#define CHUNK_ID_ICRD
Definition: DLS.h:89
#define CHUNK_ID_IKEY
Definition: DLS.h:92
uint8_t VelocityUpperLimit
Defines the upper velocity value limit of a velocity split (only if an user defined limit was set...
Definition: gig.h:347
uint8_t ReleaseVelocityResponseDepth
Dynamic range of release velocity affecting envelope time (0 - 4).
Definition: gig.h:415
RIFF::List * pParentList
Definition: DLS.h:291
std::list< Sample * > SampleList
Definition: DLS.h:502
Will be thrown whenever a gig specific error occurs while trying to access a Gigasampler File...
Definition: gig.h:811
buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount)
Loads (and uncompresses if needed) the whole sample wave into RAM.
Definition: gig.cpp:640
virtual void UpdateChunks()
Apply all the DLS file's current instruments, samples and settings to the respective RIFF chunks...
Definition: DLS.cpp:1440
Group * GetGroup() const
Returns pointer to the Group this Sample belongs to.
Definition: gig.cpp:1291
InstrumentList::iterator InstrumentsIterator
Definition: DLS.h:510
Instrument(File *pFile, RIFF::List *insList, progress_t *pProgress=NULL)
Definition: gig.cpp:2955
Used for indicating the progress of a certain task.
Definition: gig.h:317
uint8_t in_end
End position of fade in.
Definition: gig.h:292
#define CHUNK_ID_ISFT
Definition: DLS.h:97
void SetVCFCutoffController(vcf_cutoff_ctrl_t controller)
Updates the respective member variable and the lookup table / cache that depends on this value...
Definition: gig.cpp:2264
unsigned long WorstCaseMaxSamples(buffer_t *pDecompressionBuffer)
Definition: gig.h:604
static const DLS::version_t VERSION_2
Reflects Gigasampler file format version 2.0 (1998-06-28).
Definition: gig.h:749
Sample * pSample
Points to the Sample which is assigned to the dimension region.
Definition: gig.h:348
uint FrameSize
Reflects the size (in bytes) of one single sample point (only if known sample data format is used...
Definition: DLS.h:395
buffer_t LoadSampleData()
Loads (and uncompresses if needed) the whole sample wave into RAM.
Definition: gig.cpp:591
uint32_t LoopStart
Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The ...
Definition: gig.h:539
Group * GetNextGroup()
Returns a pointer to the next Group object of the file, NULL otherwise.
Definition: gig.cpp:3649
Loop forward (normal)
Definition: gig.h:84
unsigned long ReadUint32(uint32_t *pData, unsigned long WordCount=1)
Reads WordCount number of 32 Bit unsigned integer words and copies it into the buffer pointed by pDat...
Definition: RIFF.cpp:590
void SetVCFVelocityCurve(curve_type_t curve)
Updates the respective member variable and the lookup table / cache that depends on this value...
Definition: gig.cpp:2273
double EG2Decay1
Decay time of the filter cutoff EG (0.000 - 60.000s).
Definition: gig.h:372
#define LIST_TYPE_3PRG
Definition: gig.h:44
uint8_t EG1ControllerAttackInfluence
Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
Definition: gig.h:360
unsigned long GetPos()
Position within the chunk data body.
Definition: RIFF.h:161
#define INITIAL_SAMPLE_BUFFER_SIZE
Initial size of the sample buffer which is used for decompression of compressed sample wave streams -...
Definition: gig.cpp:37
unsigned long position
Current position within the sample.
Definition: gig.h:300
crossfade_t Crossfade
Definition: gig.h:418
void SetAutoLoad(bool b)
Enable / disable automatic loading.
Definition: gig.cpp:3942
MidiRule * GetMidiRule(int i)
Returns a MIDI rule of the instrument.
Definition: gig.cpp:3167
smpte_format_t SMPTEFormat
Specifies the Society of Motion Pictures and Television E time format used in the following SMPTEOffs...
Definition: gig.h:534
uint16_t low
Low value of range.
Definition: DLS.h:221
double SampleAttenuation
Sample volume (calculated from DLS::Sampler::Gain)
Definition: gig.h:430
File()
Definition: gig.cpp:3326
lfo3_ctrl_t
Defines how LFO3 is controlled by.
Definition: gig.h:114
bool b64BitWavePoolOffsets
Definition: DLS.h:515
unsigned long GetSize()
Chunk size in bytes (without header, thus the chunk data body)
Definition: RIFF.h:159
RIFF List Chunk.
Definition: RIFF.h:248
#define CHUNK_ID_WSMP
Definition: DLS.h:109
double EG1Decay2
Only if EG1InfiniteSustain == false: 2nd decay stage time of the sample amplitude EG (0...
Definition: gig.h:353
bool PianoReleaseMode
Definition: gig.h:686
RIFF::Chunk * pCkData
Definition: DLS.h:407
#define CHUNK_ID_VERS
Definition: DLS.h:101
#define LIST_TYPE_3EWL
Definition: gig.h:45
void SetFixedStringLengths(const string_length_t *lengths)
Forces specific Info fields to be of a fixed length when being saved to a file.
Definition: DLS.cpp:283
RegionList * pRegions
Definition: DLS.h:469
attenuation_ctrl_t AttenuationController
MIDI Controller which has influence on the volume level of the sample (or entire sample group)...
Definition: gig.h:423
float __range_max
Only for internal usage, do not modify!
Definition: gig.h:322
static buffer_t InternalDecompressionBuffer
Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
Definition: gig.h:569
static void DestroyDecompressionBuffer(buffer_t &DecompressionBuffer)
Free decompression buffer, previously created with CreateDecompressionBuffer().
Definition: gig.cpp:1274
Pointer address and size of a buffer.
Definition: gig.h:71
virtual void LoadSamples()
Definition: gig.cpp:3431
uint8_t in_start
Start position of fade in.
Definition: gig.h:291
unsigned long Read(void *pBuffer, unsigned long SampleCount, buffer_t *pExternalDecompressionBuffer=NULL)
Reads SampleCount number of sample points from the current position into the buffer pointed by pBuffe...
Definition: gig.cpp:1025
dimension_t dimension
Specifies which source (usually a MIDI controller) is associated with the dimension.
Definition: gig.h:261
friend class Sample
Definition: gig.h:795
unsigned long SamplesInLastFrame
For compressed samples only: length of the last sample frame.
Definition: gig.h:574
bool EG2ControllerInvert
Invert values coming from defined EG2 controller.
Definition: gig.h:378
friend class Region
Definition: gig.h:708
Group * GetFirstGroup()
Returns a pointer to the first Group object of the file, NULL otherwise.
Definition: gig.cpp:3642
Group * GetGroup(uint index)
Returns the group with the given index.
Definition: gig.cpp:3661
uint8_t VelSensitivity
How sensitive the velocity should be to the speed of the controller change.
Definition: gig.h:656
#define LIST_TYPE_3GRI
Definition: gig.h:46
uint32_t DimensionRegions
Total number of DimensionRegions this Region contains, do not alter!
Definition: gig.h:620
std::string String
Definition: gig.h:62
bool MSDecode
Gigastudio flag: defines if Mid Side Recordings should be decoded.
Definition: gig.h:428
Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
Definition: gig.h:217
bool EG1InfiniteSustain
If true, instead of going into Decay2 phase, Decay1 level will be hold until note will be released...
Definition: gig.h:354
bool Compressed
If the sample wave is compressed (probably just interesting for instrument and sample editors...
Definition: gig.h:544
void ReleaseSampleData()
Frees the cached sample from RAM if loaded with LoadSampleData() previously.
Definition: gig.cpp:714
uint32_t SampleLoops
Reflects the number of sample loops.
Definition: DLS.h:363
More poles than normal lowpass.
Definition: gig.h:271
Resource * pParent
Definition: DLS.h:348
uint16_t LFO2InternalDepth
Firm pitch of the filter cutoff LFO (0 - 1200 cents).
Definition: gig.h:383
void Resize(int iNewSize)
Resize sample.
Definition: DLS.cpp:760
SampleList * pSamples
Definition: DLS.h:507
#define CHUNK_ID_FMT
Definition: DLS.h:103
uint16_t LFO1InternalDepth
Firm pitch of the sample amplitude LFO (0 - 1200 cents).
Definition: gig.h:364
#define CHUNK_ID_3CRC
Definition: gig.h:56
The difference between none and none2 is unknown.
Definition: gig.h:143
virtual void LoadInstruments()
Definition: gig.cpp:3586
float zone_size
Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only...
Definition: gig.h:265
String Message
Definition: RIFF.h:344
bool PitchTrack
If true: sample will be pitched according to the key position (this will be disabled for drums for ex...
Definition: gig.h:419
double GetVelocityRelease(uint8_t MIDIKeyVelocity)
Definition: gig.cpp:2198
unsigned long Write(void *pBuffer, unsigned long SampleCount)
Write sample wave data.
Definition: gig.cpp:1214
unsigned long ReadInt32(int32_t *pData, unsigned long WordCount=1)
Reads WordCount number of 32 Bit signed integer words and copies it into the buffer pointed by pData...
Definition: RIFF.cpp:553
virtual void UpdateChunks()
Apply Region settings to the respective RIFF chunks.
Definition: DLS.cpp:978
unsigned int Layers
Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there i...
Definition: gig.h:622
void * pStart
Points to the beginning of the buffer.
Definition: gig.h:72
bool EG2InfiniteSustain
If true, instead of going into Decay2 phase, Decay1 level will be hold until note will be released...
Definition: gig.h:374
Region * AddRegion()
Definition: gig.cpp:3136
unsigned long SamplePos
For compressed samples only: stores the current position (in sample points).
Definition: gig.h:573
Group * pGroup
pointer to the Group this sample belongs to (always not-NULL)
Definition: gig.h:570
Chunk * GetSubChunk(uint32_t ChunkID)
Returns subchunk with chunk ID ChunkID within this chunk list.
Definition: RIFF.cpp:979
#define LIST_TYPE_INS
Definition: DLS.h:78
Chunk * GetNextSubChunk()
Returns the next subchunk within the list.
Definition: RIFF.cpp:1039
std::list< Instrument * > InstrumentList
Definition: DLS.h:503
uint8_t EG2ControllerAttackInfluence
Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
Definition: gig.h:379
Exception(String Message)
Definition: gig.cpp:3959
bool SelfMask
If true: high velocity notes will stop low velocity notes at the same note, with that you can save vo...
Definition: gig.h:422
int16_t LFO3ControlDepth
Controller depth of the sample pitch LFO (-1200 - +1200 cents).
Definition: gig.h:393
RIFF::Chunk * pCkSmpl
Definition: gig.h:580
#define GET_PARAMS(params)
double EG3Attack
Attack time of the sample pitch EG (0.000 - 10.000s).
Definition: gig.h:389
void DeleteDimension(dimension_def_t *pDimDef)
Delete an existing dimension.
Definition: gig.cpp:2733
void(* callback)(progress_t *)
Callback function pointer which has to be assigned to a function for progress notification.
Definition: gig.h:318
#define CHUNK_ID_DLID
Definition: DLS.h:102
Instrument * GetNextInstrument()
Returns a pointer to the next Instrument object of the file, NULL otherwise.
Definition: gig.cpp:3498
unsigned long SamplesTotal
Reflects total number of sample points (only if known sample data format is used, 0 otherwise)...
Definition: DLS.h:394
uint8_t out_end
End postition of fade out.
Definition: gig.h:294
void DeleteGroupOnly(Group *pGroup)
Delete a group.
Definition: gig.cpp:3713
double EG2Attack
Attack time of the filter cutoff EG (0.000 - 60.000s).
Definition: gig.h:371
uint16_t BitDepth
Size of each sample per channel (only if known sample data format is used, 0 otherwise).
Definition: DLS.h:393
bool InvertAttenuationController
Inverts the values coming from the defined Attenuation Controller.
Definition: gig.h:424
double LFO1Frequency
Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
Definition: gig.h:363
Ordinary RIFF Chunk.
Definition: RIFF.h:153
uint32_t GetListType()
Returns unsigned integer representation of the list's ID.
Definition: RIFF.h:252
DimensionRegion(Region *pParent, RIFF::List *_3ewl)
Definition: gig.cpp:1314
uint32_t LoopID
Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only...
Definition: gig.h:537
uint16_t EffectSend
Definition: gig.h:683
#define CHUNK_ID_ICMS
Definition: DLS.h:86
virtual void UpdateChunks()
Update chunks with current group settings.
Definition: gig.cpp:3200
bool LFO1FlipPhase
Inverts phase of the sample amplitude LFO wave.
Definition: gig.h:367
void DeleteSample(Sample *pSample)
Delete a sample.
Definition: gig.cpp:3405
unsigned long GetFilePos()
Current, actual offset in file.
Definition: RIFF.h:162
int16_t FineTune
in cents
Definition: gig.h:684
Region(Instrument *pInstrument, RIFF::List *rgnList)
Definition: gig.cpp:2367
static buffer_t CreateDecompressionBuffer(unsigned long MaxReadSize)
Allocates a decompression buffer for streaming (compressed) samples with Sample::Read().
Definition: gig.cpp:1257
#define LIST_TYPE_RGN
Definition: DLS.h:82
bool LFO3Sync
If set to true only one LFO should be used for all voices.
Definition: gig.h:395
double LFO3Frequency
Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
Definition: gig.h:391
static const DLS::version_t VERSION_3
Reflects Gigasampler file format version 3.0 (2003-03-31).
Definition: gig.h:750
uint32_t LoopLength
Length of the looping area (in sample points).
Definition: DLS.h:230
void DeleteRegion(Region *pRegion)
Definition: gig.cpp:3150
#define CHUNK_ID_ITCH
Definition: DLS.h:100
#define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)
Definition: gig.cpp:49
#define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)
Definition: gig.cpp:50
#define CHUNK_ID_EINF
Definition: gig.h:55
DimensionRegion * pDimensionRegions[256]
Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension ...
Definition: gig.h:621
#define CHUNK_ID_3EWG
Definition: gig.h:52
uint32_t Product
Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field...
Definition: gig.h:530
bool LFO1Sync
If set to true only one LFO should be used for all voices.
Definition: gig.h:368
unsigned long ReadInt16(int16_t *pData, unsigned long WordCount=1)
Reads WordCount number of 16 Bit signed integer words and copies it into the buffer pointed by pData...
Definition: RIFF.cpp:479
split_type_t
Intended for internal usage: will be used to convert a dimension value into the corresponding dimensi...
Definition: gig.h:254
Alternating loop (forward/backward, also known as Ping Pong)
Definition: gig.h:85
unsigned long loop_cycles_left
How many times the loop has still to be passed, this value will be decremented with each loop cycle...
Definition: gig.h:302
~Sample()
Destructor.
Definition: gig.cpp:1295
void SetSampleChecksum(Sample *pSample, uint32_t crc)
Updates the 3crc chunk with the checksum of a sample.
Definition: gig.cpp:3619
Sample * GetNextSample()
Returns the next Sample of the Group.
Definition: gig.cpp:3253
uint8_t EG2ControllerReleaseInfluence
Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off)...
Definition: gig.h:381
unsigned long Write(void *pData, unsigned long WordCount, unsigned long WordSize)
Writes WordCount number of data words with given WordSize from the buffer pointed by pData...
Definition: RIFF.cpp:338
SampleList::iterator SamplesIterator
Definition: DLS.h:508
List * GetParent()
Returns pointer to the chunk's parent list chunk.
Definition: RIFF.h:158
uint16_t EG2PreAttack
Preattack value of the filter cutoff EG (0 - 1000 permille).
Definition: gig.h:370
Chunk * AddSubChunk(uint32_t uiChunkID, uint uiBodySize)
Creates a new sub chunk.
Definition: RIFF.cpp:1159
uint32_t Loops
Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Numb...
Definition: gig.h:536
bool LFO2Sync
If set to true only one LFO should be used for all voices.
Definition: gig.h:387
#define CHUNK_ID_IENG
Definition: DLS.h:90
uint32_t SMPTEOffset
The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to ...
Definition: gig.h:535
unsigned long FileNo
File number (> 0 when sample is stored in an extension file, 0 when it's in the gig) ...
Definition: gig.h:578
Sample * GetFirstSample(progress_t *pProgress=NULL)
Returns a pointer to the first Sample object of the file, NULL otherwise.
Definition: gig.cpp:3360
bool EG1ControllerInvert
Invert values coming from defined EG1 controller.
Definition: gig.h:359
friend class Group
Definition: gig.h:796
Ordinary MIDI control change controller, see field 'controller_number'.
Definition: gig.h:178
vcf_type_t
Defines which frequencies are filtered by the VCF.
Definition: gig.h:269
version_t * pVersion
Points to a version_t structure if the file provided a version number else is set to NULL...
Definition: DLS.h:484
void DeleteInstrument(Instrument *pInstrument)
Delete an instrument.
Definition: gig.cpp:3578
uint16_t LFO2ControlDepth
Controller depth influencing filter cutoff LFO pitch (0 - 1200).
Definition: gig.h:384
uint32_t LoopStart
The start value specifies the offset (in sample points) in the waveform data of the first sample poin...
Definition: DLS.h:229
uint16_t major
Definition: DLS.h:127
RegionList::iterator RegionsIterator
Definition: DLS.h:470
Loop backward (reverse)
Definition: gig.h:86
int16_t EG3Depth
Depth of the sample pitch EG (-1200 - +1200).
Definition: gig.h:390
bool GetAutoLoad()
Returns whether automatic loading is enabled.
Definition: gig.cpp:3950
uint8_t VCFKeyboardTrackingBreakpoint
See VCFKeyboardTracking (0 - 127).
Definition: gig.h:409
eg2_ctrl_t EG2Controller
MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
Definition: gig.h:377
#define CHUNK_ID_INSH
Definition: DLS.h:105
For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
Definition: gig.h:216
void * LoadChunkData()
Load chunk body into RAM.
Definition: RIFF.cpp:736
bool VCFCutoffControllerInvert
Inverts values coming from the defined cutoff controller.
Definition: gig.h:400
Different samples triggered each time a note is played, random order.
Definition: gig.h:222
#define LIST_TYPE_LRGN
Definition: DLS.h:79
void * custom
This pointer can be used for arbitrary data.
Definition: gig.h:320
#define CHUNK_ID_IGNR
Definition: DLS.h:91
double EG2Release
Release time of the filter cutoff EG (0.000 - 60.000s).
Definition: gig.h:376
uint8_t EG1ControllerReleaseInfluence
Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off)...
Definition: gig.h:362
#define CHUNK_ID_IART
Definition: DLS.h:85
float factor
Reflects current progress as value between 0.0 and 1.0.
Definition: gig.h:319
uint8_t EG2ControllerDecayInfluence
Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
Definition: gig.h:380
~Region()
Destructor.
Definition: gig.cpp:2809
Abstract base class for all MIDI rules.
Definition: gig.h:643
void SetVelocityResponseCurveScaling(uint8_t scaling)
Updates the respective member variable and the lookup table / cache that depends on this value...
Definition: gig.cpp:2234
#define CHUNK_ID_3LNK
Definition: gig.h:51
dimension_t
Defines the type of dimension, that is how the dimension zones (and thus how the dimension regions ar...
Definition: gig.h:213
uint32_t LoopEnd
Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The ...
Definition: gig.h:540
curve_type_t ReleaseVelocityResponseCurve
Defines a transformation curve to the incoming release veloctiy values affecting envelope times...
Definition: gig.h:414
Different samples triggered each time a note is played, dimension regions selected in sequence...
Definition: gig.h:221
dimension_def_t pDimensionDefinitions[8]
Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of...
Definition: gig.h:619
#define CHUNK_ID_COLH
Definition: DLS.h:110
uint8_t zones
Number of zones the dimension has.
Definition: gig.h:263
Effect 5 Depth (MIDI Controller 95)
Definition: gig.h:110
#define GIG_EXP_DECODE(x)
(so far) every exponential paramater in the gig format has a basis of 1.000000008813822 ...
Definition: gig.cpp:40
uint8_t AttenuationControllerThreshold
0-127
Definition: gig.h:425
RIFF::File * pRIFF
Definition: DLS.h:505
buffer_t GetCache()
Returns current cached sample points.
Definition: gig.cpp:699
void SetVCFVelocityDynamicRange(uint8_t range)
Updates the respective member variable and the lookup table / cache that depends on this value...
Definition: gig.cpp:2282
vcf_cutoff_ctrl_t
Defines how the filter cutoff frequency is controlled by.
Definition: gig.h:141
No controller defined.
Definition: gig.h:175
Encapsulates sample waves used for playback.
Definition: gig.h:527
virtual void SetGain(int32_t gain)
Updates the respective member variable and updates SampleAttenuation which depends on this value...
Definition: gig.cpp:1604
RIFF File.
Definition: RIFF.h:295
List * AddSubList(uint32_t uiListType)
Creates a new list sub chunk.
Definition: RIFF.cpp:1198
Group(File *file, RIFF::Chunk *ck3gnm)
Constructor.
Definition: gig.cpp:3181
InstrumentList * pInstruments
Definition: DLS.h:509
virtual void UpdateChunks()
Apply sample and its settings to the respective RIFF chunks.
Definition: DLS.cpp:836
unsigned long GuessSize(unsigned long samples)
Definition: gig.h:587
dimension value between 0-127
Definition: gig.h:255
int16_t LFO3InternalDepth
Firm depth of the sample pitch LFO (-1200 - +1200 cents).
Definition: gig.h:392
#define CHUNK_ID_IPRD
Definition: DLS.h:95
String Software
. Identifies the name of the sofware package used to create the file.
Definition: DLS.h:313
String ArchivalLocation
. Indicates where the subject of the file is stored.
Definition: DLS.h:303
Sample * GetNextSample()
Returns a pointer to the next Sample object of the file, NULL otherwise.
Definition: gig.cpp:3367
unsigned long ulWavePoolOffset
Definition: DLS.h:409
double EG2Decay2
Only if EG2InfiniteSustain == false: 2nd stage decay time of the filter cutoff EG (0...
Definition: gig.h:373
#define CHUNK_ID_INAM
Definition: DLS.h:94
int32_t Attenuation
in dB
Definition: gig.h:682
Encapsulates sample waves used for playback.
Definition: DLS.h:386
type_t type
Controller type.
Definition: gig.h:181
uint controller_number
MIDI controller number if this controller is a control change controller, 0 otherwise.
Definition: gig.h:182
uint8_t * VelocityTable
For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity ...
Definition: gig.h:461
void MoveSubChunk(Chunk *pSrc, Chunk *pDst)
Moves a sub chunk.
Definition: RIFF.cpp:1182
uint32_t SamplesPerSecond
Sampling rate at which each channel should be played (defaults to 44100 if Sample was created with In...
Definition: DLS.h:390
curve_type_t VelocityResponseCurve
Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't...
Definition: gig.h:411
void PrintMessage()
Definition: gig.cpp:3962
uint16_t EG1Sustain
Sustain value of the sample amplitude EG (0 - 1000 permille).
Definition: gig.h:355
uint32_t WavePoolCount
Definition: DLS.h:512
unsigned long NullExtensionSize
The buffer might be bigger than the actual data, if that's the case that unused space at the end of t...
Definition: gig.h:74
#define CHUNK_ID_3GNM
Definition: gig.h:54
void SetVelocityResponseDepth(uint8_t depth)
Updates the respective member variable and the lookup table / cache that depends on this value...
Definition: gig.cpp:2222
RIFF::List * pWaveList
Definition: DLS.h:406
Sample * GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t *pProgress=NULL)
Definition: gig.cpp:2914
Gigasampler specific classes and definitions.
Definition: gig.h:60
uint8_t DimensionUpperLimits[8]
gig3: defines the upper limit of the dimension values for this dimension region
Definition: gig.h:431
uint8_t TriggerPoint
The CC value to pass for the note to be triggered.
Definition: gig.h:654
uint8_t VelocityResponseDepth
Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this param...
Definition: gig.h:412
uint32_t LoopFraction
The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine...
Definition: gig.h:542
uint32_t TruncatedBits
For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
Definition: gig.h:545
Instrument * GetInstrument(uint index, progress_t *pProgress=NULL)
Returns the instrument with the given index.
Definition: gig.cpp:3511
unsigned long ReadUint16(uint16_t *pData, unsigned long WordCount=1)
Reads WordCount number of 16 Bit unsigned integer words and copies it into the buffer pointed by pDat...
Definition: RIFF.cpp:516
#define LIST_TYPE_LINS
Definition: DLS.h:77
Resource * GetParent()
Definition: DLS.h:344
#define CHUNK_ID_IARL
Definition: DLS.h:84
virtual void UpdateChunks()
Apply sample and its settings to the respective RIFF chunks.
Definition: gig.cpp:467
int8_t Pan
Panorama / Balance (-64..0..63 <-> left..middle..right)
Definition: gig.h:421
Only internally controlled.
Definition: gig.h:133
Parses Gigasampler files and provides abstract access to the data.
Definition: gig.h:747
void DeleteRegion(Region *pRegion)
Definition: DLS.cpp:1120
lfo2_ctrl_t
Defines how LFO2 is controlled by.
Definition: gig.h:123
Dimension for keyswitching.
Definition: gig.h:220
Sample * pSample
Definition: DLS.h:437
virtual ~Group()
Definition: gig.cpp:3187
void SetReleaseVelocityResponseDepth(uint8_t depth)
Updates the respective member variable and the lookup table / cache that depends on this value...
Definition: gig.cpp:2255
range_t KeyRange
Definition: DLS.h:420
#define CHUNK_ID_ISRC
Definition: DLS.h:98
Sample * GetFirstSample()
Returns the first Sample of this Group.
Definition: gig.cpp:3235
struct gig::MidiRuleCtrlTrigger::trigger_t pTriggers[32]
uint16_t EG2Sustain
Sustain value of the filter cutoff EG (0 - 1000 permille).
Definition: gig.h:375
uint32_t Instruments
Reflects the number of available Instrument objects.
Definition: DLS.h:485
Provides all neccessary information for the synthesis of a DLS Instrument.
Definition: DLS.h:447
Provides all neccessary information for the synthesis of an Instrument.
Definition: gig.h:669
void DeleteGroup(Group *pGroup)
Delete a group and its samples.
Definition: gig.cpp:3689
bool SustainDefeat
If true: Sustain pedal will not hold a note.
Definition: gig.h:427
buffer_t RAMCache
Buffers samples (already uncompressed) in RAM.
Definition: gig.h:577
bool NoteOff
If a note off should be triggered instead of a note on.
Definition: gig.h:658
String libraryName()
Returns the name of this C++ library.
Definition: gig.cpp:3975
int32_t Gain
Definition: DLS.h:360
virtual void LoadGroups()
Definition: gig.cpp:3724
Quadtuple version number ("major.minor.release.build").
Definition: DLS.h:125
#define SKIP_ONE(x)
double LFO2Frequency
Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
Definition: gig.h:382
unsigned long GetNewSize()
New chunk size if it was modified with Resize().
Definition: RIFF.h:160
uint32_t SamplePeriod
Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally...
Definition: gig.h:531
uint16_t EG1PreAttack
Preattack value of the sample amplitude EG (0 - 1000 permille).
Definition: gig.h:350
Dimension not in use.
Definition: gig.h:214
unsigned long * FrameTable
For positioning within compressed samples only: stores the offset values for each frame...
Definition: gig.h:572
curve_type_t
Defines the shape of a function graph.
Definition: gig.h:99
uint8_t bits
Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
Definition: gig.h:262
uint8_t out_start
Start position of fade out.
Definition: gig.h:293
uint8_t VCFCutoff
Max. cutoff frequency.
Definition: gig.h:401
virtual void SetKeyRange(uint16_t Low, uint16_t High)
Modifies the key range of this Region and makes sure the respective chunks are in correct order...
Definition: gig.cpp:2541
DLS specific classes and definitions.
Definition: DLS.h:120
unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence=RIFF::stream_start)
Sets the position within the sample (in sample points, not in bytes).
Definition: gig.cpp:777
Info * pInfo
Points (in any case) to an Info object, providing additional, optional infos and comments.
Definition: DLS.h:341
uint32_t Manufacturer
Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to rec...
Definition: gig.h:529
uint8_t high
High value of range.
Definition: gig.h:67
virtual void UpdateChunks()
Apply all sample player options to the respective RIFF chunk.
Definition: DLS.cpp:539
bool OverridePedal
If a note off should be triggered even if the sustain pedal is down.
Definition: gig.h:660
Reflects the current playback state for a sample.
Definition: gig.h:299
Region * GetParent() const
Definition: gig.cpp:1949
General dimension definition.
Definition: gig.h:260
eg1_ctrl_t EG1Controller
MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
Definition: gig.h:358
uint32_t * pWavePoolTableHi
Definition: DLS.h:514
split_type_t split_type
Intended for internal usage: will be used to convert a dimension value into the corresponding dimensi...
Definition: gig.h:264
If used sample has more than one channel (thus is not mono).
Definition: gig.h:215
void Resize(int iNewSize)
Resize chunk.
Definition: RIFF.cpp:805
void SetReleaseVelocityResponseCurve(curve_type_t curve)
Updates the respective member variable and the lookup table / cache that depends on this value...
Definition: gig.cpp:2246
vcf_res_ctrl_t VCFResonanceController
Specifies which external controller has influence on the filter resonance Q.
Definition: gig.h:407
curve_type_t VCFVelocityCurve
Defines a transformation curve for the incoming velocity values, affecting the VCF.
Definition: gig.h:402
#define GIG_PITCH_TRACK_ENCODE(x)
Definition: gig.cpp:43
uint8_t EG1ControllerDecayInfluence
Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
Definition: gig.h:361
List * GetNextSubList()
Returns the next sublist (that is a subchunk with chunk ID "LIST") within the list.
Definition: RIFF.cpp:1079
Defines Region information of an Instrument.
Definition: DLS.h:418
Effect 4 Depth (MIDI Controller 94)
Definition: gig.h:109
double GetVelocityAttenuation(uint8_t MIDIKeyVelocity)
Returns the correct amplitude factor for the given MIDIKeyVelocity.
Definition: gig.cpp:2194
std::list< RIFF::File * > ExtensionFiles
Definition: DLS.h:506
Sample * GetSample()
Returns pointer address to the Sample referenced with this region.
Definition: gig.cpp:2909
void SetVelocityResponseCurve(curve_type_t curve)
Updates the respective member variable and the lookup table / cache that depends on this value...
Definition: gig.cpp:2210
#define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)
Definition: gig.cpp:47
double EG1Attack
Attack time of the sample amplitude EG (0.000 - 60.000s).
Definition: gig.h:351
MidiRuleCtrlTrigger(RIFF::Chunk *_3ewg)
Definition: gig.cpp:2933
unsigned long ReadInt8(int8_t *pData, unsigned long WordCount=1)
Reads WordCount number of 8 Bit signed integer words and copies it into the buffer pointed by pData...
Definition: RIFF.cpp:405
unsigned long ReadUint8(uint8_t *pData, unsigned long WordCount=1)
Reads WordCount number of 8 Bit unsigned integer words and copies it into the buffer pointed by pData...
Definition: RIFF.cpp:442
std::list< Region * > RegionList
Definition: DLS.h:462
Region * GetNextRegion()
Returns the next Region of the instrument.
Definition: gig.cpp:3130
#define COPY_ONE(x)
#define CHUNK_ID_EWAV
Definition: gig.h:53